

RAS MC Kp-MC VB Kp-F Kp GPS Kp/ PAS Kp

GROUPES D'EAU GLACÉE, UNITÉS À 4 TUBES ET POMPES À CHALEUR POUR INSTALLATION A L'EXTÉRIEUR À CONDENSATION PAR AIR AVEC COMPRESSEURS SEMI-HERMÉTIQUES À PISTONS ET VENTILATEURS AXIAUX (DISPONIBLE VERSION À BASSE TEMPERATURE DE FLUIDE EN SORTIE) (DISPONIBLE VERSION AVEC FREE-COOLING INTÉGRÉ)

Instructions composées: Consulter la section spécifique

Lire et comprendre toutes les instructions avant d'utiliser la machine.

Il est interdit la reproduction, stockage ou transmission, même partielle, de cette publication, sous toute forme sans l'autorisation écrite de le fabriquant.

Le fabriquant peut être contacte pour fournir toute information concernant l'utilisation de ses produits. Le fabriquant met en oeuvre une politique d'amelioration continue et de developpement de ses produits et se reserve le droit d'apporter des modifications a l'equipement et aux instructions concernant l'utilisation et la maintenance, a tout moment et sans preavis.

Déclaration de conformité

Nous declarons sous notre responsabilite que les mateiaux fournis se conforment totalement aux directives CEE et EN en vigueur. La declaration de conformite est jointe a la documentation technique fournie avec l'appareil.

INDEX

1. INTRODUCTION	5
1.1 Informations préliminaires	
1.2 But et contenu de ce manuel	
1.3 Où conserver ce manuel	
1.4 Mise-à-jour des instructions	
1.5 Comment utiliser ces instructions	5
1.6 Risques résiduels	
1.7 Directives générales de sécurité	
1.8 Symboles de sécurité	
1.9 Limites d'utilisation et usages interdits	
1.10 Identification de l'unite	
2. SÉCURITÉ	
2.1 Avertissements sur substances toxiques potentiellement dangereuses	
2.2 Manipulation	
2.3 Éviter l'inhalation de concentrations élevées de vapeur	
2.4 Procédures en cas de fuite accidentelle de réfrigérant	
2.5 Informations toxicologiques sur le type de fluide frigorigène utilisé	12
2.6 Premiers secours	
3. CARACTÉRISTIQUES TECHNIQUES	
3.1 Description de l'appareil	
3.2 Versions	
3.3 Accessoires	
3.4 Données techniques	
3.5 Limites de fonctionnement	
3.6 Facteurs de correction	
3.7 Niveaux sonores	
4. INSTALLATION	
4.1 Avertissements généraux et utilisation de symboles	
4.2 Sécurité et santé du personnel	
4.3 Equipement de protection individuelle	
4.4 Réception et contrôle du matériel	
4.5 Transport et manipulation	
4.6 Stockage	
4.7 Déballage	
4.8 Levage et manutention	
4.9 Positionnement et espaces minimum	
4.10 Carte d'interface RS485 (INSE)	
4.11 Raccords filetés	37
4.12 Connexions hydrauliques	
4.13 Caractéristiques chimiques de l'eau	
4.14 Contenu d'eau minimum circuit utilisateur	
4.15 Remplissage circuit hydraulique	
4.16 Vidange du circuit hydraulique	
4.17 Batteries de condensation à micro-canaux	
4.18 Raccordements Electriques: informations préliminaires sur la sécurité	
4.19 Données électriques	
5. ACTIVATION DE L'UNITÉ	
5.1 Contrôles préliminaires	
5.2 Fonctionnement du capteur de détection de gaz réfrigérant	
5.3 Soupapes de sécurité	
5.4 Positionnement du contrôle	
5.5 Description du contrôle	
5.6 Liaison clavier déporté	
6. UTILISATION	
6.1 Mise en marche et démarrage initial	
5 ···	00

6.2 Mise à l'arrêt	57
6.3 Comment changer les points de consignes	57
6.4 Touche PROBES	
6.5 Touche ALARM	59
6.6 Touche CIRC	59
6.7 Touche SERVICE	61
6.8 Silencier l'alarme acoustique	67
6.9 Arrêt d'urgence	67
7. MAINTENANCE DE L'ÜNITÉ	
7.1 Remarques générales	
7.2 Accès à l'unité	69
7.3 Maintenance programmée	69
7.4 Maintenance extraordinaire	
7.5 Contrôles périodiques	71
7.6 Réparation de circuit réfrigérant	76
8. MISE A L'ARRET DÉFINITIF DE L'APPAREIL	
8.1 Mise hors circuit	77
8.2 Élimination, récupération et recyclage	77
8.3 Directive RAEE (UE uniquement)	77
9. RÉSOLUTION DES DISFONCTIONNEMENTS	78
9.1 Dépannage	78
10. SCHÉMAS DIMENSIONNELS	80

1. INTRODUCTION

1.1 Informations préliminaires

Il est interdit la reproduction, stockage ou transmission, même partielle, de cette publication, sous toute forme sans l'autorisation écrite de la société

La machine, à laquelle ces instructions se référent, a été conçue pour les utilisations qui seront présentés dans les sections appropriées, conformément à ses caractéristiques de performance. Exclusion de toute responsabilité contractuelle et non, pour les dommages aux personnes, animaux ou choses, due à une mauvaise installation, réglage et entretien ou à une mauvaise utilisation. Toutes les utilisations non expressément mentionnées dans ce manuel ne sont pas autorisées.

Cette documentation est un support d'information et n'est pas considérée comme un contrat. La société met en oeuvre une politique d'amélioration continue et de développement de ses produits et se réserve le droit d'apporter des modifications à l'équipement et aux instructions concernant l'utilisation et la maintenance, à tout moment et sans préavis.

1.2 But et contenu de ce manuel

Ce manuel fournit les informations de base pour l'installation, l'utilisation et la maintenance de l'appareil. Elles ont été rédigées en conformité aux dispositions législatives de l'Union Européenne et aux normatives techniques en vigueur à la date d'émission du manuel. Les instructions incluent les indications nécessaires à éviter des utilisations incorrectes raisonnablement prévisibles.

1.3 Où conserver ce manuel

Les instructions doivent être conservées en lieu sûr, à l'abri de poudre, humidité et facilement accessibles aux utilisateurs et manutentionnaires. Les instructions doivent toujours accompagner l'appareil et pour cela doivent être cédées à chaque éventuel utilisateur successif.

1.4 Mise-à-jour des instructions

Nous conseillons de vérifier que les instructions soient mises à jour à la dernière version disponible. Toutes les mises à jour envoyées au client doivent être conservées dans l'annexe de ce manuel. Le Fabricant est disponible pour fournir tout information concernant l'utilisation de ses produits.

1.5 Comment utiliser ces instructions

Les utilisateurs ou les opérateurs doivent nécessairement se référer aux instructions avant toute intervention sur la machine et en chaque occasion d'incertitude concernant le transport, le déplacement, l'installation, l'entretien, l'utilisation et le démontage de la machine.

Dans ce manuel, on a utilisé des symboles graphiques, pour attirer l'attention des opérateurs et des utilisateurs sur les activités à mener en toute sécurité, ces symboles sont indiquées dans les paragraphes suivants.

1.6 Risques résiduels

La machine a été conçue de façon à minimiser les risques pour la sécurité des personnes qui vont interagir avec elle. Pendant l'étude du projet, il n'à été pas techniquement possible d'éliminer complètement les causes de risque. Par conséquent, il est absolument nécessaire de faire référence aux prescriptions et les symboles ci-dessous.

PIÈCES CONSIDERES (si présents)	RISQUE RÉSIDUEL	MODE	PRÉCAUTIONS
échangeurs de cha- leur	petites coupures	Contact	éviter le contact, utiliser des gants de protection.
ventilateurs et grilles de ventilation	Blessures	insertion d'objets pointus à tra- vers les grilles, tandis que les ventilateurs sont en marche	Ne poussez jamais d'objets d'aucu- ne sorte dans les grilles des venti- lateurs.
Intérieure de l'unité: compresseurs et tuyaux du gaz	Brûlures	Contact	éviter le contact, utiliser des gants de protection.
câbles électriques et pièces métalliques	Electrocution, graves brûlures	défaut d'isolement des câbles d'alimentation, pièces métalli- ques sous tension.	protection adéquate des lignes électriques; soin extrême dans la réalisation de la mise à terre des parties métalliques.
extérieure de l'unité: zone entourant l'unité	empoisonnement, graves brûlures	incendie dû à un court-circuit ou une surchauffe de la ligne d'alimentation du panneau électrique de l'unité.	section des câbles et système de protection de la ligne d'alimentation conformément au réglementation en vigueur
Vanne de sécurité de basse pression	empoisonnement, graves brûlures	pression d'évaporation élevée pour l'utilisation incorrecte de la machine lors des opérations de maintenance.	vérifier soigneusement la valeur de la pression d'évaporation pendant les opérations de maintenance.
Vanne de sécurité de haute pression	empoisonnement, graves brûlures, perte auditive	Intervention de la vanne de sé- curité de haute pression avec le compartiment du circuit de réfrigération ouvert	éviter autant que possible l'ouver- ture du compartiment du circuit de réfrigération; vérifier soigneusement la pression de condensation; utiliser tous les équipements de protection individuelle prévus par la loi.
Unité	Incendie externe	Incendie causé par calami- tés naturelles ou combustion d'élements à proximité de l'unité	Prévoir les dipositifs nécessaires contre l'incendie
Unité	Explosion, lésions, brulures, intoxications, foudroiement pour calamité naturelles ou tremblement de terre.	Casse, affaissement pour calamité naturelle ou tremblement de terre.	Prévoir les nécessaires précautions de nature électrique (disjoncteur et protections des lignes d'alimentation électriques adéquats; soin maximal dans la liaison à la terre des parties métalliques), et mécanique (ancrages ou plots anti-vibratiles antisismiques pour éviter cassures ou chutes accidentelles).

1.7 Directives générales de sécurité

Symboles de sécurité en conformité à la normative ISO 3864-2:

INTERDICTION

Indique les opérations interdites.

DANGER

Indique les opérations qui peuvent être dangereuses et/ou interrompre le fonctionnement du matériel.

ACTION OBLIGATOIRE

Indique une information importante que l'utilisateur doit suivre pour garantir le bon fonctionnement du matériel en toute sécurité.

Symboles de sécurité en conformité à la norme ISO 3864-2:

Le symbole graphique d'avertissement est complété par des informations de sécurité (texte ou autres symboles).

1.8 Symboles de sécurité

DANGER QUELCONQUE

Observer soigneusement toute les indications. Le non respect des consignes peut causer des situation de danger avec consequents blessures des operateurs et utilisateurs.

RISOUF D'ÉLECTROCUTION

Observer soigneusement les instructions à côté du pictogramme.

Ce symbole indique des composants de l'unité ou, dans ce manuel, des actions qui pourraient causer des risques de nature électrique.

PIÈCES EN MOUVEMENT

Ce symbole indique les composants en mouvement de l'unité qui pourraient causer des risques.

SURFACES CHAUDES

Le symbole indique les composants de la machine avec température de surface élevée qui pourraient causer des risques.

SURFACES TRANCHANTES

Le symbole indique les composants ou les pièces de la machine qui peuvent provoquer des coupures au contact.

MISE À TERRE

Le symbole identifie le point de la machine pour la mise à terre.

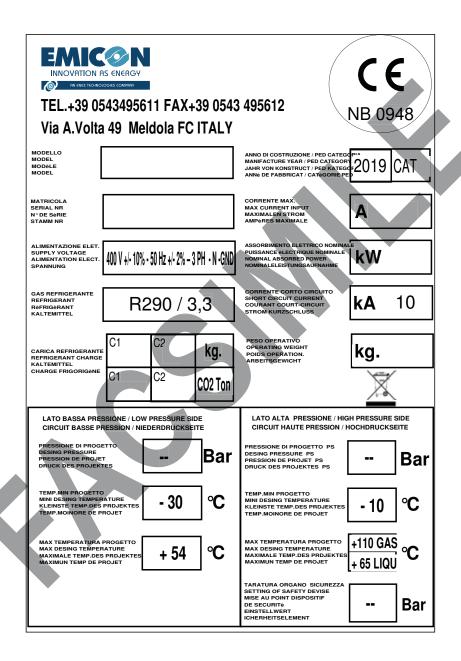
LIRE ET COMPRENDRE LES INSTRUCTIONS

Lire et comprendre les instructions de la machine avant d'effectuer toute opération.

MATERIEL A RECYCLER

1.9 Limites d'utilisation et usages interdits

La machine a été conçue et construite exclusivement pour les usages décrits dans la section «Restrictions d'utilisation" du manuel technique. Toute autre utilisation est interdite, car elle peut causer des risques pour la santé des opérateurs et des utilisateurs.


L'unité n'est cependant pas adapte pour opérer dans les environnements:

- En présence d'atmosphères explosives ou très poussiéreuse;
- En présence de vibrations vibrations;
- En présence de champs électromagnétiques;
- En présence d'atmosphères agressives.

1.10 Identification de l'unité

Chaque unité dispose d'une plaque signalétique indiquant les informations principales de la machine. Les données de la plaquette peuvent différer de celles présentés dans le manuel technique, puisque dans ce dernier il y a les données de l'unité standard sans accessoires. Pour les informations électriques pas présentes sur la plaquette se référer au schéma électrique. Une reproduction de la plaquette est représentée ci-dessous.

La plaquette ne doit jamais être retirée l'appareil.

2. SÉCURITÉ

2.1 Avertissements sur substances toxiques potentiellement dangereuses

2.1.1 Identification du type de fluide intervenant: R290

WARNING!

The refrigerant R290 (PROPANE) is flammable and it must be handled only by competent and responsible operators, under the conditions specified in the safety regulations in force.

DO NOT SMOKE

NO NAKED FLAMES

Le réfrigérant utilisé dans les unités est Propane (R290). Sur la base de la Directive 2014/68/EU (ci-après : PED), cette substance est considérée un Gaz (PED, art. 13) du Groupe 1 comprenant les fluides dangereux (extrêmement inflammables).

Sur la base de la norme EN 378-1, all. F, le propane est classifié dans le Groupe A3 (basse toxicité, inflammabilité élevée). Dans le tableau suivant, vous trouverez les informations de sécurité du réfrigérant :

Dénomination chimique	Propane
Désignation (ISO 817)	R290
Formule chimique	C_3H_8
Groupe de sécurité (EN378-1)	A3
Classification PED	Group 1 Gaz
Limite inférieur d'inflammabilité (LFL)	0,038 kg/m3 – 2,1% m3/m3 ()
Limite supérieur d'inflammabilité (UFL)	0,177 kg/m3 – 9,8% m3/m3 (1)
Densité de la vapeur (à 25°C, 101,3 kPa)	1,832 kg/m3
Densité relative	1,56
Masse moléculaire	44 kg/kmol
Point d'ébullition normal	-42°C
Température d'auto-allumage	470°C
Température d'inflammabilité	-104°C
Potentiel de réduction de l'ozone (ODP)	0
Potentiel de chauffage global (GWP – horizon de temps de 100 ans)	3 (CO2 = 1)

Il est important d'observer que le propane a une densité supérieure que celle de l'air. Pourtant en case de fuites, il tiendra à s'écouler vers le bas.

COMPOSITION CHIMIQUE DU PROPANE UTILISÉ COMME RÉFRIGÉRANT

Quantité de réfrigérant \geq 99,5% by mass Impuretés organiques \leq 0,5% by mass

1,3 Butadiène (pour chaque hydrocarbure multiple insaturé)	≤ 5 ppm en masse
Normal.Hexane	≤ 50 ppm en masse
Benzène (pour chaque composé aromatique)	≤ 1 ppm en masse
Soufre	≤ 2 ppm en masse
Gaz non condensables	≤ 1,5% en volume de la phase vapeur
Eau	≤ 25 ppm en masse
Contenu d'acides	≤ 0,02 mg KOH/g pour la neutralisation
Résidu d'évaporation	≤ 50 ppm en masse
Particules/solides	Non (inspection visuelle)
Glide de température en évaporation	≤ 0,5 K
Limite pratique (EN378-1, all.F)	0,008 kg/m3
Limite d'exposition pour toxicité élevée (ATEL) / Limite pour privation d'O2	0,09 kg/m3

Le propane présente des problèmes de compatibilité avec quelque type de caoutchouc et plastique, en particulier si chlorurés. Il sera nécessaire d'effectuer des essais de compatibilité sur les matériels critiques.

2.1.2 Identification du type d'huile utilisé

L'huile lubrifiante utilisée dans le circuit de réfrigérant de l'unité est de type polyester. Dans tous les cas, se référer toujours à la plaque signalétique du compresseur.

Informations écologiques sur les principaux réfrigérants utilisés.

PROTECTION DE L'ENVIRONNEMENT: Lisez attentivement les informations écologiques et les instructions suivantes.

2.1.3 Persistance et dégradation

Les fluides frigorigènes utilisés se décomposent en basse atmosphère (troposphère) assez rapidement. Les produits de décomposition sont largement dispersibles, ils ont donc une très faible concentration. Ils n'influencent pas le smog photochimique (c'est-à-dire ils ne sont pas parmi les composés organiques volatils VOC, comme établi par l'accord de la CEE). Les réfrigérants utilisés n'endommagent pas la couche d'ozone. Ces substances sont réglementées par le Protocole de Montréal (révision 1992) et le règlement CE n °. 2037/200 du 29 Juin 2000.

2.1.4 Effets sur le traitement des effluents

Les rejets dans l'atmosphère de ces produits ne provoquent pas de pollution de l'eau à long terme.

2.1.5 Contrôle de l'exposition et protection individuelle

Porter un vêtement de protection et des gants; toujours protéger les yeux et le visage.

2.1.6 Limites d'exposition professionnelle:

Valeur limite TLV-TWA: 2500 ppm

2.2 Manipulation

Les utilisateurs et le personnel d'entretien doivent être correctement informés sur les risques liés à la gestion des substances potentiellement toxiques. Si ces indications ne sont pas respectées, on peut encourir en blessures ou dommages à l'unité.

2.3 Éviter l'inhalation de concentrations élevées de vapeur

La concentration atmosphérique de fréon doit être minimisée le plus possible et maintenue à un niveau minimum, en dessous la limite d'exposition professionnelle. Les vapeurs sont plus lourdes que l'air et des concentrations dangereuses peuvent se former près du sol, où la ventilation est faible. Dans ce cas, assurer une ventilation adéquate. Éviter le contact avec flammes et surfaces chaudes, car cela peut donner lieu à la formation de produits de décomposition toxiques et irritants. Éviter tout contact entre le liquide et les yeux ou la peau.

2.4 Procédures en cas de fuite accidentelle de réfrigérant

Assurer une protection individuelle appropriée (en utilisant des moyens de protection respiratoire) pendant les opérations de nettoyage. Si les conditions sont suffisamment sûres, isoler la source de la fuite. Si le montant de la perte est limité, laisser évaporer le matériel à condition que la ventilation soit adéquate. Si la perte est importante, aérez la zone.

Contenir les déversements avec du sable, de la terre ou autre matériel absorbant approprié.

Empêcher que le réfrigérant pénètre dans les drains, les égouts, les sous-sols, car des vapeurs suffocantes peuvent se former.

2.5 Informations toxicologiques sur le type de fluide frigorigène utilisé

2.5.1 Inhalation

Une concentration élevée dans l'atmosphère peut provoquer des effets anesthésiants et une perte de conscience. Une exposition prolongée peut provoquer des anomalies du rythme cardiaque et provoquer une mort soudaine. Des concentrations plus élevées peuvent causer l'asphyxie par faible présence d'oxygène dans l'atmosphère.

2.5.2 Contact avec la peau

Des éclaboussures de liquides peuvent provoquer des gelures. Probablement il n'est pas dangereux pour l'absorption cutanée. Le contact prolongé ou répété peut causer le dégraissage de la peau entraînant sécheresse, fissures et dermatite.

2.5.3 Contact avec les yeux

Des éclaboussures de liquides peuvent provoquer des gelures.

2.5.4 Ingestion

Bien que très improbable, il peut causer des gelures.

2.6 Premiers secours

Suivez soigneusement les avertissements et les procédures de premiers secours indiqués dans la FICHE DE SÉCURITÉ DU RÉFRIGÉRANT ET DE L'HUILE LUBRIFIANTE téléchargeable à partir des codes QR suivants.

Dans tous les cas, respectez toujours ce qui est indiqué sur la plaque signalétique du compresseur pour identifier de manière univoque le type d'huile utilisé à l'intérieur du circuit frigorifique

REFRIGERANT: R290 Safety data sheet

OIL: 68PAG

150PAG (follow the information on the compressor nameplate)

3. CARACTÉRISTIQUES TECHNIQUES

3.1 Description de l'appareil

Les groupes d'eau glacée (RAS MC Kp, RAS MC VB Kp), les unités à 4 tubes (GPS Kp) et les pompes à chaleur (PAS Kp) à condensation par air sont projetés pour l'installation externe et sont particulièrement indiqués pour le refroidissement où le refroidissement et le chauffage (également simultanés dans le cas d'unités polyvalentes) de solutions liquides ou d'installations de refroidissement du secteur tertiaire, où il est nécessaire de garantir des performances optimales et un impact environnemental très faible. Les machines sont conçues comme groupes froids pour l'extérieur en conformité aux normes EN 378 et ses versions mises à jour. En fonction de la puissance frigorifique demandée, ces groupes sont disponibles dans les versions à 1 et 2 circuits frigorifiques indépendantes, avec 1 ou 2 compresseurs par circuit (configuration "tandem"). Grâce à la large disponibilité d'accessoires disponibles, ces unités sont particulièrement versatiles et se peuvent facilement adapter aux différents types d'installations, où il faut une production d'eau glacée ou chauffée. Les unités sont complètement assemblées et testées en usine, livrées avec une charge de réfrigérant et huile incongelable. Par conséquence, une fois qu'elles arrivent en chantier, elles doivent seulement être positionnées et branchées aux réseaux électrique et hydraulique.

3.1.1 Structure

Structure robuste et compacte, constituée par un socle et châssis en éléments d'acier galvanisé de grande épaisseur, assemblés par des rivets en acier inox. Toutes les parties en acier galvanisé positionnées à l'extérieur sont protégées superficiellement par une peinture à poudres en four de couleur RAL 7035. Le compartiment technique et la restante partie du circuit frigorifique, sauf la section de condensation, sont hermétiquement isolés et, en cas de fuite de réfrigérant, un ventilateur centrifuge installé à l'extérieur du compartiment assure la ventilation forcée (jusqu'à 4 échanges d'air par minute). Pour réduire les émissions sonores, il est possible d'isoler le compartiment technique par du matériel ignifuge et insonorisant de type standard ou majorée (option CFU).

3.1.2 Compresseurs

Les compresseurs utilisés sont du type semi-hermétique alternatif, projetés et optimisés pour le fonctionnement avec les hydrocarbures et réalisés en conformité aux directives de sécurité en vigueur. Le moteur électrique, prédisposé pour le démarrage à intensités réduites (option PW) est complet de protection thermique (installée dans le tableau électrique). Le système de lubrification forcée est complet de filtres de l'huile et des raccords pour mesurer la pression du lubrifiant par une pompe à haute pression. Chaque compresseur est installé sur des amortisseurs en caoutchouc et équipé de plots et robinets sur le refoulement et l'aspiration, pressostat différentiel électronique de contrôle du niveau de l'huile résistance de carter et senseur de température sur le refoulement pour le contrôle de la température de refoulement du compresseur. Dans les circuits où les compresseurs sont montés en parallèle (configuration « tandem ») chaque compresseur est équipé par un senseur du niveau de l'huile et une ligne de récupération de réfrigérant; le système s'active automatiquement si dans un des deux compresseurs le niveau de lubrifiant tombe au-dessous de la valeur minimale.

3.1.3 Échangeur côté utilisateur

L'échangeur côté utilisateur est du type à plaques, en acier inox mono ou bi-circuit, isolé thermiquement par du matériel flexible à cellules fermées de grande épaisseur. L'évaporateur est fourni d'un pressostat différentiel de sécurité sur le débit d'eau qui ne permet pas le fonctionnement de l'unité en cas de manque ou de réduction du débit d'eau.

3.1.4 Batteries de condensation

Les batteries d'échange thermique air/fréon des versions RAS MC Kp et RAS MC VB Kp sont réalisées en tubes d'aluminium extrudés à micro-canaux et ailettes en aluminium soudo-brasées. Grâce au volume réduit et à la grande surface extérieure, ces batteries permettent une significative réduction de la charge de réfrigérant et une capacité élevée d'échange thermique.

Dans les versions pompes à chaleur, celles avec système free-cooling intégré (RAS F Kp) et dans les unités à 4 tubes (GPS Kp), les batteries sont réalisées avec tuyauteries en cuivre avec micro-ailettes positionnées en rangs décalés, qui se détendent mécaniquement sur l'échangeur ailetté en aluminium pour maximaliser l'efficience de l'échange thermique. Sur les unités à 4 tubes et sur les pompes à chaleur, l'ailette en aluminium est fournie en standard avec traitement hydrophile et est projetée de façon à garantir l'efficacité optimale d'échange thermique. Les batteries extérieures de free-cooling sont réalisées de tubes en cuivre à section optimisée pour la réduction des pertes de charge côté glycol et ailettes en aluminium; ces batteries sont alimentées par une vanne 3 voies, qui ouvre le circuit au cas où la température de l'air externe est inférieure de 3 °K à la température d'entrée du fluide à refroidir.

3.1.5 Ventilateurs axiaux

Les ventilateurs sont du type axial, à 6 pôles, avec moteur triphasé directement couplé au rotor. Les profils d'aile du rotor sont réalisés en aluminium, spécifique pour minimiser les turbulences, en réduisant les émissions sonore et en augmentant l'efficience. Chaque ventilateur est équipé d'une grille de protection, vernie après la construction. Les moteurs sont entièrement fermés, degré de protection IP54, classe F et thermostat de protection incorporé aux bobinages. Sur les versions pour basses températures et free-cooling, les ventilateurs sont entraînés par un système inverter V/F, qui contrôle la température de condensation, en faisant varier la vitesse de rotation. Sur les unités à 4 tubes le contrôle standard des ventilateurs est du type à coup de phase.

3.1.6 Échangeur régénérateur

Pour garantir une juste valeur de surchauffe du gaz à l'aspiration des compresseurs et une température correcte de l'huile de lubrification, sur chaque circuit frigorifique on installe un échangeur régénérateur à plaques. Cet échangeur sous-refroidit le liquide en sortie de la section de condensation et surchauffe le gaz à la sortie de l'évaporateur, en assurant en même temps soit l'absence de liquide en aspiration au compresseur que la hausse d'efficience de l'entier cycle frigorifique. Techniquement isolé par du matériel flexible à cellules fermées de grande épaisseur.

3.1.7 Circuit frigorifique

Circuits frigorifiques indépendants, complets de vanne de service pour l'introduction du réfrigérant, sonde antigel, voyant de passage liquide et humidité, filtre déshydrateur pour R290 et ample surface de filtration, pressostat de sécurité côté haute pression équipé par un raccord pour le branchement au tuyau de déchargement du réfrigérant, détendeur thermostatique de type électronique pour la taille 1001 et à partir de la taille 2402, pressostats réglables et manomètres de haute et basse pression dédiées pour R290.*

Tous les composants du circuit frigorifique sont indiqués pour les hydrocarbures et en particulier pour le propane.

*Les unités pompes à chaleur, en ajoute à la vanne 4-voies d'inversion du cycle, sont équipées d'un séparateur gaz/liquide en aspiration et d'un réservoir de liquide dimensionné convenablement. Les unités à 4 tubes (GPS Kp) sont équipées d'une vanne d'inversion à 4 voies et d'un séparateur gaz/liquide sur l'aspiration et d'un receveur de liquide. Si nécessaire, on prévoit aussi un séparateur d'huile sur le refoulement.

3.1.8 Tableau électrique

Tableau électrique conforme aux normes 61439-1 EN 60204, dans lequel tous les composants du système de contrôle et ceux nécessaires pour le démarrage et la protection thermique des moteurs, câblés et testés à l'usine, sont installés. Il est réalisé par un coffret étanche, avec des presse-étoupes IP54. A l'intérieur du coffret, en outre, les suivants composants sont installés: les dispositifs de contrôle et puissance, la carte électronique à microprocesseur avec le clavier et l'écran pour visualiser les plusieurs fonctions, le disjoncteur général avec système bloque porte, le transformateur pour l'alimentation des circuits auxiliaires, les interrupteurs automatiques, les fusibles et les télérupteurs pour les moteurs des compresseurs et des ventilateurs, les borniers pour l'alarme général et l'ON/OFF à distance, le bornier des circuits de contrôle du type à ressort, possibilité de s'interfacer aux systèmes de gestion BMS.

3.1.9 Microprocesseur

Microprocesseur électronique de gestion de l'unité, installé dans le tableau électrique, avec fonctions de régulation de la température de l'eau glacée et contrôle à l'entrée de l'évaporateur, contrôlé des paramètres de fonctionnement, compteur d'heures et égalisation des heures de fonctionnement des compresseurs, système automatique de détection des défaillances, mémorisation de l'historique des alarmes, possibilité de gestion et supervision à distance par habilitation de la gestion des protocoles de communication standard.

3.1.10 Capteur de détection de gaz réfrigérant

L'unité est équipée en standard d'un capteur situé à l'intérieur du compartiment compresseurs, qui a pour tâche d'analyser en permanence l'air environnant et de déclencher une alarme si une concentration de réfrigérant supérieure aux valeurs seuils est détectée (en raison d'une fuite). Le capteur est relié électriquement à une unité de contrôle située à l'intérieur du tableau électrique, qui coordonne ses fonctions opérationnelles.

3.2 Autres versions

3.2.1 Version standard

Groupes d'eau glacée à condensation par air avec des compresseurs semi-hermétiques à pistons installés sur un ou deux circuits frigorifiques indépendantes en configuration simple ou tandem, échangeur à plaques soudo-brasées en acier INOX AISI 316, batteries extérieures de condensation réalisées entièrement en aluminium avec technologie à micro-canaux, dimensionnées pour fonctionner jusqu'à 40 °C extérieures et eau en sortie côté utilisateur jusqu'à -2 °C.

3.2.2 Version pour basses températures

Groupes d'eau glacée à condensation par air avec des compresseurs semi-hermétiques à pistons installés sur un ou deux circuits frigorifiques indépendantes en configuration simple ou tandem, échangeur à plaques soudo-brasées en acier INOX AISI 316, batteries extérieures de condensation réalisées entièrement en aluminium avec technologie à micro-canaux, dimensionnées pour fonctionner jusqu'à 40 °C extérieures et eau en sortie côté utilisateur jusqu'à -14 °C. Ventilateurs axiaux AC équipés par un système de contrôle de la condensation inverter V/F, obtenu par la variation de la vitesse des ventilateurs mêmes, détendeur électronique et isolation de l'échangeur côté utilisateur par du matériel à haut épaisseur.

3.2.3 Version free-cooling

Groupes d'eau glacée à condensation par air avec des compresseurs semi-hermétiques à pistons installés sur un ou deux circuits frigorifiques indépendantes en configuration simple ou tandem, échangeur à plaques soudo-brasées en acier INOX AISI 316, batteries extérieures de condensation réalisées avec tuyauteries en cuivre avec micro-ailettes positionnées en rangs décalés, qui se détendent mécaniquement sur l'échangeur ailetté, avec section free-cooling intégrée. Le free-cooling s'active par une vanne 3-voies modulante avec signale 0-10 V, quand la température de l'air externe se baisse de 3 °K par rapport à la température d'entrée du fluide à refroidir. Ventilateurs axiaux AC équipées par un système de contrôle de la condensation inverter V/F, obtenu par la variation de la vitesse des ventilateurs mêmes.

3.2.4 Version Pompe à Chaleur

Pompe à chaleur à condensation par air avec des compresseurs semi-hermétiques à pistons installés sur un ou deux circuits frigorifiques indépendantes en configuration simple ou tandem, échangeur à plaques soudo-brasées en acier INOX AISI 316, batteries extérieures de condensation ou d'évaporation réalisées avec tuyauteries en cuivre avec micro-ailettes positionnées en rangs décalés, qui se détendent mécaniquement sur l'échangeur ailetté, avec traitement hydrophile. L'inversion du cycle est sur le côté fréon par une vanne 4-voies. Dimensionnées pour travailler en modalité estivale jusqu'à 40 °C de température extérieure et -5 °C de sortie d'eau utilisateur, et en modalité hivernale jusqu'à -15 °C de température extérieure avec eau en sortie à 35 °C.

3.2.5 Version unités à 4 tubes

Unités à 4 tubes à condensation par air avec compresseurs semi-hermétiques à pistons fonctionnant sur un ou deux circuits frigorifiques indépendants dans les systèmes hydroniques à 4 tubes.

Les échangeurs côté usager sont du type à plaques soudo-brasées en acier inox AISI 316, batteries externes d'évaporation/condensation avec tubes en cuivre et micro-ailettes positionnées en rangs décalés se détendant mécaniquement sur l'échangeur ailetté en aluminium avec traitement hydrophile. Elles sont dimensionnées pour fonctionner en été jusqu'à 40°C air extérieur et -5°C en sortie côté usager et jusqu'à -15°Cet eau en sortie à 35°C en hiver.

3.3 Accessoires

- A+V Ampèremètre + voltmètre: Dispositif électrique pour mesurer l'intensité de courant et la tension électrique absorbé par
- AE Alimentation électrique différente du standard
- AXT Diffuseur pour ventilateur axial: dispositif qui, par l'optimisation du flux d'air, permet une sensible réduction de la consommation électrique des ventilateurs de condensation, et, par conséquent, une réduction du niveau de bruit.
- Fonctionnement à basses températures air extérieur (jusqu'à -10°C): Dispositif électronique du type à coupure de phase pour le réglage continu de la pression de condensation par la variation de la vitesse ventilateurs, qui permet le fonctionnement de l'unité jusqu'à -10°C air extérieur (Disponible en option pour la version standard et fourni en standard sur la version pompe à chaleur et sur les unités à 4 tubes).
- **Dispositif** électronique à convertisseur de fréquence (Inverter) pour le réglage modulant de la pression de condensation par la variation de vitesse des ventilateurs qui permet le fonctionnement de l'unité jusqu'à -20°C air extérieur (standard sur les versions à basses températures et free-cooling).
- Capotage sur les compresseurs avec matériel d'épaisseur majorée: Isolement compresseurs avec capotage recouvert de matériel isolant d'épaisseur majorée.
- CS Compteur de démarrage compresseur: Dispositif électromécanique placé à l'intérieur du tableau électrique, enregistrant le nombre total de démarrages du compresseur.
- DR Détecteur de fuites de réfrigérant
- Ventilateurs hélicoïdes avec moteur à commutation électronique: RÉquipés de moteur triphasé à commutation électronique (EC), directement couplé au rotor extérieur, ils permettent de régler en continu par moyen d'un signal 0-10V, géré intégralement par le microprocesseur. Pales en aluminium à profil d'aile spécifiques pour éviter de turbulence, en assurant l'efficacité maximale et des très bas niveaux sonores. Chaque ventilateur est équipé d'une grille de protection en acier galvanisé et peint après la construction. Degré de protection IP54 et thermostat de protection incorporé aux bobinages. Grâce à un réglage plus précis du débit d'air, ils permettent le fonctionnement de l'unité avec températures de l'air jusqu'à -20°C (En alternative à BT et BF).
- Protection anticorrosive des batteries de condensation par électrodéposition des particules de peinture époxy
 Peinture de la surface extérieure de l'échangeur par l'application par chute d'une résine spécifique pour garantir une protection aux agents atmosphériques. Elle est conseillée pour installations dans des environnements très corrosifs, comme
 les zones industrielles à élevées concentrations d'agents de contamination (> 100 ppm) ou les zones urbaines avec des
 niveaux de pollution atmosphérique très élevés (> 125 μg/m3), ou en proximité des zones côtières. (En alternative à l'option
 PCP).
- FCN Compresseur désactivé sous le OAT établi pour les unités Free-cooling
- GP Grille de protection de la batterie de condensation: Grille de protection en métal contre les coups accidentels.
- HRV2 Double pressostat de sécurité côté haute pression.
- Isolement Victaulic coté pompe: Isolement des joints par mousse de polyuréthane à cellules fermées pour éviter la formation de condensat, coté pompe.
- **Isolement Victaulic coté réservoir**: Isolement des joints par mousse de polyuréthane à cellules fermées pour éviter la formation de condensat, coté réservoir.
- Isolement Victaulic coté free-cooling
- IH Carte série RS 485: Carte électronique connectée au microprocesseur, permet la communication entre les unités et un système de supervision. Il est possible de contrôler totalement l'appareil à distance. (En alternative à IH BAC et IWG).
- IH-BAC Interface sérielle pour protocol BACNET: Carte électronique connectée au microprocesseur qui permet la communication entre les unités et des systèmes de supervision avec protocole BACNET pour contrôler les unités à distance et gérer la télésurveillance. (En alternative à IH et IWG).
- IMG Interface sérielle pour protocole SNMP ou TCP/IP: Gateway externe à connecter au microprocesseur qui permet la communication entre les unités et des systèmes de supervision avec protocole SNMP ou TCP/IP pour contrôler les unités à distance et gérer la télésurveillance. (En alternative à IH et IH LON).
- KLD Kit d'interface avec écran pour capteur de fuite de réfrigérant sans entretien: Kit d'interface portable avec écran graphique pouvant être connecté à la carte de commande du capteur de fuite de réfrigérant via un câble 4 pôles (fourni dans le kit). Il permet d'effectuer les opérations de contrôle et de réglage des paramètres de fonctionnement du capteur lors du contrôle et de l'entretien périodiques.
- MF Moniteur de phase: Dispositif électronique de contrôle de la séquence correcte et/ou de l'absence éventuelle de l'une des 3 phases entrainant la mise hors tension de l'armoire si nécessaire.

MP ADV Contrôle avancé MP pour MSC

MS Jusqu'à deux unités

MSC Système de contrôle en cascade - jusqu'à n.6 unités

MSHWEV Surveillance à distance des unités en cascade

MT Manomètres

MV Réservoir: De capacité proportionnée à l'unité, complet de vase d'expansion, soupape de sécurité, hydromètre, robinet de remplissage et vidange eau, robinets échappement air, vannes d'interception pour les opérations d'entretien sur le filtre. (PAS disponible en version pompe à chaleur).

- P1 Groupe pompe individuelle: Groupe de pompage eau glacée avec pompe individuelle, vase d'expansion, soupape de sécurité, robinet de remplissage et vidange eau, robinet échappement air, démarrage électrique de la pompe. La pompe est de type centrifuge monobloc à 2 pôles.
- P1H Groupe pompe individuelle à haute pression: Groupe de pompage eau glacée avec pompe individuelle à haute pression, vase d'expansion, soupape de sécurité, robinet de remplissage et vidange eau, robinet échappement air, démarrage électrique de la pompe. La pompe est de type centrifuge monobloc à 2 pôles.
- **Group pompes en parallèle (une pompe en fonction)**: Group de pompage eau glacée avec 2 pompes en parallèle, vase d'expansion, soupape de sécurité, robinet de remplissage et vidange eau, robinet échappement air, vannes d'interception de l'eau en aspiration et soupape de retenue sur le refoulement de chaque pompe, démarrage électrique de la pompe. La pompe est de type centrifuge monobloc à 2 pôles.
- P2H Group pompe en parallèle haute pression disponible (une pompe en fonction): Group de pompage eau glacée avec 2 pompes en parallèle à haute pression disponible, vase d'expansion, soupape de sécurité, robinet de remplissage et vidange eau, robinet échappement air, vannes d'interception de l'eau en aspiration et soupape de retenue sur le refoulement de chaque pompe, démarrage électrique de la pompe. La pompe est de type centrifuge monobloc à 2 pôles.
- **Supports anti-vibratiles en caoutchouc**: Supports anti-vibratiles du type à cloche pour l'isolation de l'unité sur le socle support (fournis en kit), constitués par une base à cloche en fer zingue et mélange en caoutchouc naturel. (En alternative à PM).
- PCP Protection anti-corrosion des batteries de condensation: peinture de la surface extérieur de l'échangeur par l'application d'une résine époxy de couleur noir pour garantir une protection aux agents atmosphériques pour installations près de la mer, dans des environnements à des concentrations moyennes d'agents de contamination (<100 ppm) ou à des zones urbaines avec des niveaux de pollution atmosphérique mi-bas (<125 ug/m3). (Disponibile per le versioni standard e bassa temperatura In alternativa a ECP).
- PM Supports anti-vibratiles à ressort: Amortisseurs à ressort pour l'isolation de l'unité sur le socle support, particulièrement indiqués pour l'installation de l'unité dans des environnements difficiles et agressifs (fournis en kit). Ils sont constitués par deux plaques et d'une convenable quantité de ressorts en acier harmonique. (En alternative à PA).
- PQ Interface de programmation à distance: Terminal à distance, permettant d'afficher les valeurs de température détectées par les sondes, les entrées d'alarmes digitales, les sorties et la commande à distance ON/OFF de l'unité, de changer les paramètres, un alarme sonore et l'affichage des alarmes présentes.
- PW Système de démarrage Part-Winding: Démarrage des compresseurs à étages, réduisant d'environ 35% le courant de démarrage de chaque compresseur.
- QN Option Nordic pour panneau électrique (panneaux entrés/sortie des grilles + chauffage électrique15W/m)
- RA Résistance électrique sur l'évaporateur: Resistance électrique à l'intérieur de l'évaporateur avec fonction antigel et complète d'un thermostat autonome.
- RD Robinets sur le refoulement compresseurs
- RF Système de mise en phase cosfi ≥0,9: dispositif électrique constitué par des condenseurs indiqués pour la mise en phase des compresseurs, assurant une valeur du cosfi ≥0,9, de façon à limiter l'absorption de puissance du réseau.
- RH Robinets sur l'aspiration compresseurs
- RL Relais thermiques des compresseurs: Dispositifs électromécaniques de protection au surcharge des compresseurs.
- RM Batterie avec ailettes pré vernies
- RP Récupération partielle: de la chaleur de condensation par des échangeurs à plaques réfrigérant/eau (désurchauffeur), installés toujours en série aux compresseurs. Cette option est utilisée quand l'on veut récupérer partiellement la chaleur de condensation pour produire de l'eau sanitaire.

RR Batterie cuivre/cuivre: Réalisation spéciale des batteries de condensation avec tubes et ailettes en cuivre (uniquement disponible pour la version free-cooling)

RV Couleur RAL personnalisée de la structure.

SPX Porte métallique pour affichage

Vanne thermostatique électronique: Vanne thermostatique électronique qui réduit le temps de réponse de l'unité. Cette option est conseillée en cas de variations fréquentes de la charge frigorifique pour augmenter l'efficacité du groupe (Déjà présente dans les versions pour basses températures, dans la taille 1001 et à partir de la taille 2402).

VB Version brine: Unité prédisposée pour fonctionner avec températures d'eau à la sortie de l'évaporateur inferieures à 0°C. L'évaporateur est fourni avec une isolation de 20 mm.

VMA Ventilateurs périodiques fonctionnant en veille (1min/h)

VSC Inverseur sur compresseur: installation d'un inverseur pour le contrôle en fréquence du compresseur (sur les unités

jusqu'à 2 compresseurs). Sur les unités à 4 compresseurs, on installe 2 inverseurs.

VSP1 Inverter pompe individuelle

VSP1H Inverter groupe pompe à haute pression

VSP2 Inverter groupe pompes en parallèle (une pompe en fonction)

VSP2H Inverter groupe pompe à haute pression (une pompe en fonction)

XW Hiweb

3.4 Données techniques

3.4.1 RAS MC VB Kp

RAS MC VB Kp		521	591	721	871	1001	1402
Puissance refroidissement	kW	31,8	35,6	43,8	53,5	60,7	87,1
puissance absorbée	kW	12,4	14,2	17,4	21,1	25,4	34,6
Courant absorbé nominal	А	31,0	32,4	35,5	44,6	53,7	71,0
EER	-	2,56	2,51	2,52	2,54	2,39	2,52
SEPR*	-	3,58	3,51	3,38	3,70	3,42	3,35
Circuits	n°	1	1	1	1	1	2
Compresseurs	n°	1	1	1	1	1	2
Réfrigérant R290							
Charge fréon	kg	4	4	8	8	8	15
Potentiel réchauffement global (GWP)		0,02	0,02	0,02	0,02	0,02	0,02
Tonnes équivalent CO ₂	kg	0,08	0,08	0,16	0,16	0,16	0,3
Ventilateurs Axiaux (1)							
Quantité	n°	2	2	2	2	2	4
débit d'air total	m³/h	16250	16650	18700	31200	32600	37400
puissance absorbée nominale	kW	1,2	1,2	1,2	3,9	3,9	2,4
Courant absorbé nominal	А	5,2	5,2	5,2	7,8	7,8	10,5
Évaporateur (2)							
Quantité	n°	1	1	1	1	1	1
Débit d'eau	m³/h	6,2	6,9	8,5	10,4	11,8	17,0
Perte de charge	kPa	27	34	16	23	29	18
Diamètres connections hydrauliques		1"1/4 Gas M	1"1/4 Gas M	2" Vic	2" Vic	2" Vic	2"1/2 Vic
Poids							
Poids de transport	kg	1052	1056	1164	1242	1252	1942
Poids en fonctionnement	kg	1056	1060	1170	1248	1258	1956
Dimensions							
Longueur	mm	2590	2590	2590	2590	2590	4840
Largeur	mm	1370	1370	1370	1370	1370	1370
Hauteur	mm	2570	2570	2570	2570	2570	2570
Niveaux sonores							
LWA totale de l'unité (3)	dB(A)	86,3	88,1	88,1	92,2	92,2	92,6
SPL totale de l'unité (4)	dB(A)	54,3	56,1	56,1	60,2	60,2	60,4
Alimentation électrique							
Tension/Phases/Fréquence	V/ph/Hz	400/3/50+N+PE	400/3/50+N+PE 4	00/3/50+N+PE	400/3/50+N+PE	400/3/50+N+PE	400/3/50+N+P

Conditions de fonctionnement:

Les valeurs SEPR indiquées se réfèrent à un groupe moyenne température et sont calculées selon le Règlement Européen 2015/1095.

⁽¹⁾ Température air extérieure 35°C.

⁽²⁾ Fluide: Eau + 35% d'éthylène glycol - Température entrée/sortie: -3/-8 °C

⁽³⁾ Niveau puissance sonore en champ libre selon ISO 3744.

⁽⁴⁾ Niveau pression sonore à 10 m en champ libre selon conditions ISO 3744.

RAS MC VB Kp		1702	2102	2402	2902	3402	3702
Puissance refroidissement	kW	106,1	124,1	149,2	172,0	207,6	235,3
puissance absorbée	kW	41,9	51,3	57,4	71,7	85,5	103,2
Courant absorbé nominal	А	88,9	107,7	124,6	138,4	172,6	208,9
EER	-	2,53	2,42	2,60	2,40	2,43	2,28
SEPR*	-	3,75	3,49	3,75	3,38	3,68	3,47
Circuits	n°	2	2	2	2	2	2
Compresseurs	n°	2	2	4	4	4	4
Réfrigérant R290							
Charge fréon	kg	15	17	17	16	21	24
Potentiel réchauffement global (GWP)		0,02	0,02	0,02	0,02	0,02	0,02
Tonnes équivalent CO ₂	kg	0,3	0,34	0,34	0,32	0,42	0,48
Ventilateurs Axiaux (1)	, i						
Quantité	n°	4	4	4	4	6	6
débit d'air total	m³/h	62000	63600	68200	73000	101400	101400
puissance absorbée nominale	kW	7,8	7,8	7,8	7,8	11,6	11,6
Courant absorbé nominal	А	15,6	15,6	15,6	15,6	23,4	23,4
Évaporateur (2)							
Quantité	n°	1	1	1	1	1	1
Débit d'eau	m³/h	20,7	24,2	29,1	33,5	40,4	45,8
Perte de charge	kPa	26	24	31	24	35	35
Diamètres connections hydrauliques		2"1/2 Vic	3" Vic	3" Vic	3" Vic	3" Vic	3" Vic
Poids							
Poids de transport	kg	2096	2162	2518	2600	3102	3120
Poids en fonctionnement	kg	2110	2188	2540	2632	3134	3152
Dimensions							
Longueur	mm	4840	4840	4840	4840	4430	4430
Largeur	mm	1370	1370	1370	1370	2260	2260
Hauteur	mm	2570	2570	2570	2570	2480	2480
Niveaux sonores							
LWA totale de l'unité (3)	dB(A)	95,7	95,7	96,0	96,0	99,2	99,7
SPL totale de l'unité (4)	dB(A)	63,4	63,4	63,7	63,7	66,9	67,4
Alimentation électrique							
Tension/Phases/Fréquence	V/ph/Hz	400/3/50+N+PE	400/3/50+N+PE	400/3/50+N+PE	400/3/50+N+PE	400/3/50+N+PE	400/3/50+N+P

Conditions de fonctionnement:

^{*}Les valeurs SEPR indiquées se réfèrent à un groupe moyenne température et sont calculées selon le Règlement Européen 2015/1095.

⁽¹⁾ Température air extérieure 35°C.

⁽²⁾ Fluide: Eau – Température entrée/sortie: 12/7 °C

 ⁽³⁾ Niveau puissance sonore en champ libre selon ISO 3744.
 (4) Niveau pression sonore à 10 m en champ libre selon conditions ISO 3744.

3.4.2 RAS MC Kp

RAS MC Kp		521 MC VS Kp	591 MC VS Kp	721 MC VS Kp	871 MC VS Kp	1001 MC VS Kp	1402 MC Kp
Puissance refroidissement	kW	54,2	61,0	74,8	92,9	107,1	155,5
puissance absorbée	kW	16,4	19,2	23,3	29,2	34,1	47,5
Courant absorbé nominal	Α	35,1	38,2	42,5	52,1	63,2	85,5
EER	-	3,30	3,19	3,21	3,18	3,15	3,27
SEER (EN14825)	-	4,17	4,12	4,24	4,17	4,14	4,15
Circuits	n°	1	1	1	1	1	2
Compresseurs	n°	1	1	1	1	1	2
Réfrigérant R290							
Charge fréon	kg	4	4	8	8	8	15
Potentiel réchauffement global (GWP)		0,02	0,02	0,02	0,02	0,02	0,02
Tonnes équivalent CO ₂	kg	0,08	0,08	0,16	0,16	0,16	0,3
Ventilateurs Axiaux (1)							
Quantité	n°	2	2	2	2	2	4
débit d'air total	m³/h	17760	17690	20020	40220	40070	80770
puissance absorbée nominale	kW	1,2	1,2	1,2	3,9	3,9	7,8
Courant absorbé nominal	Α	5,2	5,2	5,2	7,8	7,8	15,6
Évaporateur (2)							
Quantité	n°	1	1	1	1	1	1
Débit d'eau	m³/h	9,3	10,5	12,9	16,0	18,4	26,7
Perte de charge	kPa	29	35	17	24	31	21
Diamètres connections hydrauliques		1"1/4 Gas M	1"1/4 Gas M	2" Vic	2" Vic	2" Vic	2"1/2 Vic
Poids							
Poids de transport	kg	1094	1096	1206	1304	1310	2002
Poids en fonctionnement	kg	1098	1100	1212	1310	1316	2016
Dimensions							
Longueur	mm	2590	2590	2590	2590	2590	4840
Largeur	mm	1370	1370	1370	1370	1370	1370
Hauteur	mm	2570	2570	2570	2570	2570	2570
Niveaux sonores							
LWA totale de l'unité (3)	dB(A)	86,3	88,1	88,1	92,2	92,2	92,6
SPL totale de l'unité (4)	dB(A)	54,3	56,1	56,1	60,2	60,2	60,4
Alimentation électrique							
Tension/Phases/Fréquence	V/ph/Hz	400/3/50+N+PE	400/3/50+N+PE	400/3/50+N+PE	400/3/50+N+PE	400/3/50+N+PE	400/3/50+N+P

Conditions de fonctionnement:

⁽⁴⁾ Niveau pression sonore à 10 m en champ libre selon conditions ISO 3744.

⁽¹⁾ Température air extérieure 35°C.

⁽²⁾ Fluide: Eau – Température entrée/sortie: 12/7 °C

⁽³⁾ Niveau puissance sonore en champ libre selon ISO 3744.

DAG MO M		4700 140 14	2422 142 14	0400 140 15	2222 112 15	0.400 140 4
RAS MC Kp		1702 MC Kp	2102 MC Kp	2402 MC Kp	2902 MC Kp	3402 MC Kp
Puissance refroidissement	kW	182,8	215,7	252,1	289,7	352,9
puissance absorbée	kW	56,4	68,2	77,0	96,5	114,1
Courant absorbé nominal	А	103,7	126,6	145,5	166,3	205,7
EER	-	3,24	3,16	3,28	3,00	3,09
SEER (EN14825)	-	4,14	4,12	4,26	4,13	4,24
Circuits	n°	2	2	2	2	2
Compresseurs	n°	2	2	4	4	4
Réfrigérant R290						
Charge fréon	kg	15	17	17	16	21
Potentiel réchauffement global (GWP)		0,02	0,02	0,02	0,02	0,02
Tonnes équivalent CO ₂	kg	0,3	0,34	0,34	0,32	0,42
Ventilateurs Axiaux (1)						
Quantité	n°	4	4	4	4	6
débit d'air total	m³/h	80470	80110	79850	79400	119920
puissance absorbée nominale	kW	7,8	7,8	7,8	7,8	11,6
Courant absorbé nominal	Α	15,6	15,6	15,6	15,6	23,4
Évaporateur (2)						
Quantité	n°	1	1	1	1	1
Débit d'eau	m³/h	31,4	37,1	43,4	49,8	60,7
Perte de charge	kPa	28	26	33	26	36
Diamètres connections hydrauliques		2"1/2 Vic	3" Vic	3" Vic	3" Vic	3" Vic
Poids						
Poids de transport	kg	2098	2156	2522	2598	3100
Poids en fonctionnement	kg	2112	2178	2544	2630	3132
Dimensions						
Longueur	mm	4840	4840	4840	4840	4430
Largeur	mm	1370	1370	1370	1370	2260
Hauteur	mm	2570	2570	2570	2570	2480
Niveaux sonores						
LWA totale de l'unité (3)	dB(A)	95,7	95,7	96,0	96,0	99,2
SPL totale de l'unité (4)	dB(A)	63,4	63,4	63,7	63,7	66,9
Alimentation électrique						
Tension/Phases/Fréquence	V/ph/Hz	400/3/50+N+PE	400/3/50+N+PE	400/3/50+N+PE	400/3/50+N+PE	400/3/50+N+PE
	•					

Conditions de fonctionnement:

^{*} Les valeurs SEPR indiquées se réfèrent à un groupe moyenne température (eau en sortie jusqu'à -8°C) et sont calculées selon le Règlement Européen 2015/1095.

⁽¹⁾ Température air extérieure 35°C.

⁽²⁾ Fluide: Eau – Température entrée/sortie: 12/7 °C

⁽³⁾ Niveau puissance sonore en champ libre selon ISO 3744.

⁽⁴⁾ Niveau pression sonore à 10 m en champ libre selon conditions ISO 3744.

3.4.3 RAS F Kp

Puissance consommée	RAS F Kp		521	591	721	871	1001	1402
Courant absorbé nominal A 35,1 37,2 41,8 55,2 65,0 83,4 EER - 2,80 2,98 3,08 2,89 2,94 30,8 SEPR (EN14825) - 5,32 5,33 5,34 5,49 5,47 5,41 Circuils n° 1 1 1 1 1 1 1 2 Compresseurs n° 1 1 1 1 1 1 2 Refrigerant R290 Charge freon kg 4 6 7 7 11 13 Potentiel réchauffement global (GWP) 0,02	Puissance refroidissement	kW	50,9	60,1	73,8	89,1	103,8	146,6
EER - 2,80 2,98 3,08 2,89 2,94 3,08 SEPR (EN14825) - 5,32 5,33 5,34 5,49 5,47 5,41 Circiuits n° 1 1 1 1 1 1 1 1 1 2 Compresseurs n° 1 1 1 1 1 1 2 Réfrigérant Revo Charge réon kg 4 6 7 7 11 13 13 10 11 10 11 10 11 11 11 10 10 34780 45350 10 10 10 10 10 10 10 10 10 10 10 10 10 10 </td <td>Puissance consommée</td> <td>kW</td> <td>18,2</td> <td>20,2</td> <td>23,9</td> <td>30,8</td> <td>35,3</td> <td>47,5</td>	Puissance consommée	kW	18,2	20,2	23,9	30,8	35,3	47,5
SEPR (EN14825) -	Courant absorbé nominal	А	35,1	37,2	41,8	55,2	65,0	83,4
Circuitis n° 1 1 1 1 1 1 1 2 2 Compresseurs n° 1 1 1 1 1 1 1 1 2 2 Compresseurs n° 1 1 1 1 1 1 1 1 1 2 2 Refrigerant R290 Charge fréon kg 4 6 7 7 7 111 13 13 Potentiel réchaulfement global (GWP) 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,0	EER	-	2,80	2,98	3,08	2,89	2,94	3,08
Compresseurs n° 1 1 1 1 1 1 1 1 2 Refrigerant R290 Charge fréon kg 4 6 7 7 11 13 Potentiel réchauffement global (GWP) 0.02<	SEPR (EN14825)	-	5,32	5,33	5,34	5,49	5,47	5,41
Refrigerant R290 Kg 4 6 7 7 11 13 Potentiel rechauffement global (GWP) 0,02 <t< td=""><td>Circuits</td><td>n°</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>2</td></t<>	Circuits	n°	1	1	1	1	1	2
Charge fréon kg 4 6 7 7 1 11 13 Potentiel réchauffement global (GWP) 0,02 0,02 0,02 0,02 0,02 0,02 0,02 Tonnes équivalent CO, kg 0,08 0,12 0,14 0,14 0,22 0,26 Ventilateurs Axiaux (1) Cuantité n° 1 1 1 2 2 2 2 2 Debit air total m³/h 24120 22870 22910 46960 43780 45350 Puissance absorbé nominal kW 2,5 2,5 2,5 5,0 5,0 5,0 5,0 Courant absorbé nominal A 5,2 5,2 5,2 5,0 5,0 5,0 5,0 Courant absorbé nominal A 5,2 5,2 5,2 5,0 10,3 10,3 10,3 10,3 Evaporateur (2) Cuantité n° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Compresseurs	n°	1	1	1	1	1	2
Potentiel réchauffement global (GWP) 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,0	Réfrigérant R290							
Potentiel réchauffement global (GWP) 0,02 0,0	Charge fréon	kg	4	6	7	7	11	13
Ventilateurs Axiaux (i)	Potentiel réchauffement global (GWP)	_	0,02	0,02	0,02	0,02	0,02	0,02
Ventilateurs Axiaux (i) Ouantité n° 1 1 1 1 2 2 2 2 2 2	Tonnes équivalent CO ₂	kg	0,08	0,12	0,14	0,14	0,22	0,26
Debit air total m³/h 24120 22870 22910 46960 43780 45350 Puissance absorbé nominal kW 2,5 2,5 2,5 5,0 5,0 5,0 5,0 Courant absorbé nominal A 5,2 5,2 5,2 5,2 10,3 10,3 10,3 10,3 Evaporateur © Quantité n° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ventilateurs Axiaux (1)							
Puissance absorbé nominal kW 2,5 2,5 2,5 5,0 5,0 5,0 5,0 Courant absorbé nominal A 5,2 5,2 5,2 10,3 10,3 10,3 10,3 Exporateur (?) Quantité n° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Quantité	n°	1	1	1	2	2	2
Courant absorbé nominal A 5,2 5,2 5,2 10,3 10,3 10,3 Évaporateur (°) Quantité n° 1 2 27,8 8 9 9 1 4 1 2 6 0 1 2 2 31 41 2 6 0 1 2 7 2 31 41 2 6 0 1 1 4 1 2 6 0 0 1 1 4 1 2 6 6 6 2 2 1 1 4 1 1 1 1 1 2 1	Débit air total	m³/h	24120	22870	22910	46960	43780	45350
Évaporateur (°) Quantité n° 1 2 2 2 3 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Puissance absorbé nominal	kW	2,5	2,5	2,5	5,0	5,0	5,0
Quantitité n° 1 2 2 27,8 27,8 27,8 26,0 1 1 2 6 2 2 31 41 26 2 2 31 41 26 2 2 31 41 26 2 2 31 41 26 2 2 34" Gas 3/4" Gas 4/4	Courant absorbé nominal	А	5,2	5,2	5,2	10,3	10,3	10,3
Débit d'eau m³/h 9,7 11,4 14,0 16,9 19,7 27,8 Perte de charge kPa 35 47 22 31 41 26 Diamètres connections hydrauliques 1/2" Gas 3/4" Gas 3/4" Gas 1"1/4 Gas 2x 3/4" Gas Free cooling (8) Puissance Free Cooling kW 31,5 32,8 26,3 63,6 66,2 52,1 Débit d'eau m³/h 9,7 11,4 14,0 16,9 19,7 27,8 Perte de charge kPa 20 27 25 42 54 23 Poids Poids de transport kg 1066 1102 1131 1451 1517 1739 Poids en fonctionnement kg 1088 1124 1150 1492 1558 1776 Dimensions Longueur mm 1370 1370 1370 1370 1370 1370 1370 <td>Évaporateur (2)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Évaporateur (2)							
Perte de charge	Quantité	n°	1	1	1	1	1	1
Diamètres connections hydrauliques 1/2" Gas 3/4" Gas 3/4" Gas 3/4" Gas 1"1/4 Gas 2x 3/4" Gas Free cooling (6) Puissance Free Cooling	Débit d'eau	m³/h	9,7	11,4	14,0	16,9	19,7	27,8
Free cooling (s) kW 31,5 32,8 26,3 63,6 66,2 52,1 Débit d'eau m³/h 9,7 11,4 14,0 16,9 19,7 27,8 Perte de charge kPa 20 27 25 42 54 23 Poids Poids de transport kg 1066 1102 1131 1451 1517 1739 Poids en fonctionnement kg 1088 1124 1150 1492 1558 1776 Dimensions Longueur mm 1730 1730 2770 2770 2770 Largeur mm 1370 1370 1370 1370 1370 1370 1370 1370 1370 1370 2420	Perte de charge	kPa	35	47	22	31	41	26
Puissance Free Cooling kW 31,5 32,8 26,3 63,6 66,2 52,1 Débit d'eau m³/h 9,7 11,4 14,0 16,9 19,7 27,8 Perte de charge kPa 20 27 25 42 54 23 Poids Poids Poids de transport kg 1066 1102 1131 1451 1517 1739 Poids en fonctionnement kg 1088 1124 1150 1492 1558 1776 Dimensions Longueur mm 1730 1730 1730 2770 2770 2770 Largeur mm 1370 1370 1370 1370 1370 1370 1370 1370	Diamètres connections hydrauliques		1/2" Gas	3/4" Gas	3/4" Gas	3/4" Gas	1"1/4 Gas	2x 3/4" Gas
Débit d'eau m³/h 9,7 11,4 14,0 16,9 19,7 27,8 Perte de charge kPa 20 27 25 42 54 23 Poids Poids de transport kg 1066 1102 1131 1451 1517 1739 Poids en fonctionnement kg 1088 1124 1150 1492 1558 1776 Dimensions Longueur mm 1730 1730 1730 2770 2770 2770 Largeur mm 1370 1370 1370 1370 1370 1370 1370 1370 1370 1370 1370 2420	Free cooling (5)							
Perte de charge kPa 20 27 25 42 54 23 Poids Poids Poids de transport kg 1066 1102 1131 1451 1517 1739 Poids en fonctionnement kg 1088 1124 1150 1492 1558 1776 Dimensions Longueur mm 1730 1730 1730 2770 2770 2770 Largeur mm 1370 1370 1370 1370 1370 1370 1370 1370	Puissance Free Cooling	kW	31,5	32,8	26,3	63,6	66,2	52,1
Poids Poids de transport kg 1066 1102 1131 1451 1517 1739 Poids en fonctionnement kg 1088 1124 1150 1492 1558 1776 Dimensions Longueur mm 1730 1730 2770 2770 2770 2770 2770 2770 1370 1370 1370 1370 1370 1370 1370 1370 1370 1370 2420 24	Débit d'eau	m³/h	9,7	11,4	14,0	16,9	19,7	27,8
Poids de transport kg 1066 1102 1131 1451 1517 1739 Poids en fonctionnement kg 1088 1124 1150 1492 1558 1776 Dimensions Longueur mm 1730 1730 2770 2770 2770 Largeur mm 1370<	Perte de charge	kPa	20	27	25	42	54	23
Poids en fonctionnement kg 1088 1124 1150 1492 1558 1776 Dimensions Longueur mm 1730 1730 1730 2770 2770 2770 Largeur mm 1370 1370 1370 1370 1370 1370 1370 Hauteur mm 2420 2420 2420 2420 2420 2420 2420 Niveaux sonore LWA totale de l'unité (3) dB(A) 88,9 90,1 91,8 94,5 94,5 94,7 SPL totale de l'unité (4) dB(A) 57,0 58,2 60,0 62,5 62,5 62,7 Alimentation électrique	Poids							
Dimensions Longueur mm 1730 1730 2770 2770 2770 Largeur mm 1370 </td <td>Poids de transport</td> <td>kg</td> <td>1066</td> <td>1102</td> <td>1131</td> <td>1451</td> <td>1517</td> <td>1739</td>	Poids de transport	kg	1066	1102	1131	1451	1517	1739
Longueur mm 1730 1730 1730 2770 2770 2770 Largeur mm 1370 1420 2420 2420 <td< td=""><td>Poids en fonctionnement</td><td>kg</td><td>1088</td><td>1124</td><td>1150</td><td>1492</td><td>1558</td><td>1776</td></td<>	Poids en fonctionnement	kg	1088	1124	1150	1492	1558	1776
Largeur mm 1370 1240 <t< td=""><td>Dimensions</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Dimensions							
Hauteur mm 2420 <t< td=""><td>Longueur</td><td>mm</td><td>1730</td><td>1730</td><td>1730</td><td>2770</td><td>2770</td><td>2770</td></t<>	Longueur	mm	1730	1730	1730	2770	2770	2770
Niveaux sonore LWA totale de l'unité (3) dB(A) 88,9 90,1 91,8 94,5 94,5 94,7 SPL totale de l'unité (4) dB(A) 57,0 58,2 60,0 62,5 62,5 62,7 Alimentation électrique 60,0	Largeur	mm	1370	1370	1370	1370	1370	1370
LWA totale de l'unité (3) dB(A) 88,9 90,1 91,8 94,5 94,5 94,7 SPL totale de l'unité (4) dB(A) 57,0 58,2 60,0 62,5 62,5 62,7 Alimentation électrique	Hauteur	mm	2420	2420	2420	2420	2420	2420
SPL totale de l'unité (4) dB(A) 57,0 58,2 60,0 62,5 62,5 62,7 Alimentation électrique	Niveaux sonore							
Alimentation électrique	LWA totale de l'unité (3)	dB(A)	88,9	90,1	91,8	94,5	94,5	94,7
	SPL totale de l'unité (4)	dB(A)	57,0	58,2	60,0	62,5	62,5	62,7
Tension/Phases/Fréquence V/ph/Hz 400/3/50+N+PE 400/3/50+N+	Alimentation électrique							
	7 mm of the most of country and							

Conditions de fonctionnement:

- (1) Température air extérieure 35°C.
- (2) Fluide: Eau Température entrée/sortie: 12/7 °C
- (3) Niveau puissance sonore en champ libre selon ISO 3744.
- (4) Niveau pression sonore à 10 m en champ libre selon conditions ISO 3744.
- (5) Free-Cooling: Air 3°C Liquide 12°C (Eau +30% Ethylène Glycol) à débit nominal

RAS F Kp		1702	2102	2402	2902	3402
Puissance refroidissement	kW	174,9	208,5	222,0	283,3	332,6
Puissance consommée	kW	59,5	70,2	83,6	96,5	118,5
Courant absorbé nominal	А	105,7	127,1	153,5	168,6	206,5
EER	-	2,94	2,97	2,65	2,94	2,81
SEPR (EN14825)	-	5,41	5,34	5,23	5,28	5,24
Circuits	n°	2	2	2	2	2
Compresseurs	n°	2	2	4	4	4
Réfrigérant R290						
Charge fréon	kg	15	19	14	19	24
Potentiel réchauffement global (GWP)		0,02	0,02	0,02	0,02	0,02
Tonnes équivalent CO ₂	kg	0,3	0,38	0,28	0,38	0,48
Ventilateurs Axiaux (1)						
Quantité	n°	3	3	4	4	4
Débit air total	m³/h	67380	67670	100610	95900	89990
Puissance absorbé nominal	kW	7,4	7,4	9,9	9,9	9,9
Courant absorbé nominal	А	15,5	15,5	20,6	20,6	20,6
Évaporateur (2)						
Quantité	n°	1	1	1	1	1
Débit d'eau	m³/h	33,2	39,5	42,1	53,7	63,1
Perte de charge	kPa	35	33	41	34	45
Diamètres connections hydrauliques		2x 3/4" Gas	2x 3/4" Gas	2x 1"1/4 Gas	2x 1"1/4 Gas	2x 1"1/4 Gas
Free cooling (5)						
Puissance Free Cooling	kW	103,2	82,6	103,1	112,4	119,2
Débit d'eau	m³/h	33,2	39,5	42,1	53,7	63,1
Perte de charge	kPa	69	61	46	64	58
Poids						
Poids de transport	kg	2180	2220	2703	2874	3100
Poids en fonctionnement	kg	2246	2280	2794	2974	3178
Dimensions						
Longueur	mm	3810	3810	4850	4850	4850
Largeur	mm	1370	1370	1370	1370	1370
Hauteur	mm	2420	2420	2420	2420	2420
Niveaux sonore						
LWA totale de l'unité (3)	dB(A)	94,7	96,7	96,5	97,1	99,2
SPL totale de l'unité (4)	dB(A)	62,6	64,6	64,3	64,8	66,9
Alimentation électrique						
Tension/Phases/Fréquence	V/ph/Hz	400/3/50+N+PE	400/3/50+N+PE	400/3/50+N+PE	400/3/50+N+PE	400/3/50+N+PE

Conditions de fonctionnement:

- (1) Température air extérieure 35°C.
- (2) Fluide: Eau Température entrée/sortie: 12/7 °C
- (3) Niveau puissance sonore en champ libre selon ISO 3744.
- (4) Niveau pression sonore à 10 m en champ libre selon conditions ISO 3744.
- (5) Free-Cooling: Air 3°C Liquide 12°C (Eau +30% Ethylène Glycol) à débit nominal

3.4.4 PAS Kp

PAS Kp		451	521	651	731	881	1001	1201
Puissance refroidissement	kW	36,6	44,9	53,9	61,0	76,4	90,9	104,3
Puissance consommée	kW	12,5	14,4	16,4	19,1	24,0	29,3	35,4
Courant absorbé nominal	Α	25,9	27,8	34,0	37,0	42,8	52,0	63,8
EER	-	2,94	3,12	3,28	3,19	3,18	3,10	2,94
Circuits	n°	1	1	1	1	1	1	1
Compresseurs	n°	1	1	1	1	1	1	1
Réfrigérant R290								
Charge fréon	kg	5,5	6,5	9,5	9,5	10,0	13,0	13,0
Potentiel réchauffement global (GWP)		0,02	0,02	0,02	0,02	0,02	0,02	0,02
Tonnes équivalent CO ₂	kg	0,11	0,13	0,19	0,19	0,2	0,26	0,26
Ventilateurs Axiaux (1)	, i							
Quantité	n°	1	1	2	2	2	2	2
Débit air total	m³/h	21620	20920	10460	10460	21560	20850	20850
Puissance absorbé nominal	kW	1,9	1,9	3,8	3,8	3,8	3,8	3,8
Courant absorbé nominal	А	3,9	3,9	7,8	7,8	7,8	7,8	7,8
Évaporateur (2)								
Quantité	n°	1	1	1	1	1	1	1
Débit d'eau	m³/h	6,3	7,7	9,3	10,5	13,1	15,6	17,9
Perte de charge	kPa	35	47	28	35	17	23	29
Diamètres connections hydrauliques		1"1/4 Gas M	1"1/4 Gas M	1"1/4 Gas M	1"1/4 Gas M	2" Vic	2" Vic	2" Vic
Fonctionnement en pompe à chaleu	ur ⁽³⁾							
Puissance chauffage	kW	43,0	50,7	61,1	69,4	84,8	103,3	119,5
Puissance consommée	kW	13,1	15,0	16,6	19,1	24,0	29,3	34,4
Courant absorbé nominal	Α	26,9	28,9	34,7	37,5	43,0	52,3	62,5
SCOP	-	3,28	3,38	3,69	3,63	3,54	3,53	3,48
COP	-	3,28	3,27	3,56	3,47	3,37	3,45	3,35
Poids								
Poids de transport	kg	882	946	1258	1280	1350	1416	1466
Poids en fonctionnement	kg	884	948	1262	1284	1356	1422	1472
Dimensions								
Longueur	mm	1620	1620	2660	2660	2660	2660	2660
Largeur	mm	1370	1370	1370	1370	1370	1370	1370
Hauteur	mm	2420	2420	2420	2420	2420	2420	2420
Niveaux sonore								
LWA totale de l'unité (3)	dB(A)	84,3	84,6	84,8	88,6	91,0	93,2	93,2
SPL totale de l'unité (4)	dB(A)	52,4	52,7	52,9	56,6	59,0	61,2	61,2
Alimentation électrique								
•								
Tension/Phases/Fréquence	V/ph/Hz				400/3/50+N+PE			

Conditions de fonctionnement:

- (1) Température air extérieure 35°C.
- (2) Fluide: Eau Température entrée/sortie: 12/7 °C
- (3) Température air 7°C, Humidité 87%, température de l'eau 40/45°C.
- (4) Niveau puissance sonore en champ libre selon ISO 3744.
- (5) Niveau pression sonore à 10 m en champ libre selon conditions ISO 3744.

PAS Kp		1502	1702	2102	2502	2902	3402
Puissance refroidissement	kW	129,7	148,4	180,6	209,5	248,2	296,8
Puissance consommée	kW	40,0	47,5	58,7	70,9	78,4	96,0
Courant absorbé nominal	A	74,8	83,6	104,0	128,2	145,5	169,8
EER	- -	3,24	3,13	3,08	2,96	3,17	3,09
Circuits	n°	3,24	3,13	3,08	2,96	2	
	n°						2
Compresseurs	П	2	2	2	2	4	4
Réfrigérant R290	l. m	14.5	10.5	27.5	20.0	45.0	F7.0
Charge fréon	kg	14,5	19,5	37,5	38,0	45,0	57,0
Potentiel réchauffement global (GWP)	Line	0,02	0,02	0,02	0,02	0,02	0,02
Tonnes équivalent CO ₂	kg	0,29	0,39	0,75	0,76	0,9	1,14
Ventilateurs Axiaux (1)							-
Quantité	n°	3	3	4	4	5	5
Débit air total	m³/h	21570	20860	20850	20850	20850	25050
Puissance absorbé nominal	kW	5,7	5,7	7,6	7,6	9,5	12,4
Courant absorbé nominal	А	11,7	11,7	15,6	15,6	19,5	25,8
Évaporateur (2)	_						
Quantité	n°	1	1	1	1	1	1
Débit d'eau	m³/h	22,3	25,5	31,1	36,0	42,7	51,1
Perte de charge	kPa	15	19	27	24	32	26
Diamètres connections hydrauliques		3" Vic	3" Vic	3" Vic	3" Vic	3" Vic	3" Vic
Fonctionnement en pompe à chaleu							
Puissance chauffage	kW	142,2	168,0	209,3	239,8	280,1	333,8
Puissance consommée	kW	38,7	46,2	58,8	68,0	76,7	94,2
Courant absorbé nominal	Α	73,6	82,2	104,5	123,9	144,1	168,4
SCOP	-	3,68	3,63	3,56	3,53	3,65	3,54
COP	-	3,30	3,25	3,29	3,29	3,38	3,27
Poids							
Poids de transport	kg	1798	1876	2246	2366	2918	3106
Poids en fonctionnement	kg	1812	1890	2260	2388	2940	3138
Dimensions							
Longueur	mm	3700	3700	4850	4850	5890	5890
Largeur	mm	1370	1370	1370	1370	1370	1370
Hauteur	mm	2420	2420	2420	2420	2420	2420
Niveaux sonore							
LWA totale de l'unité (3)	dB(A)	93,7	93,7	95,2	95,2	95,2	95,5
SPL totale de l'unité (4)	dB(A)	61,6	61,6	63,0	63,0	62,9	63,1
Alimentation électrique							
Tension/Phases/Fréquence				400/3/5	0+N+PE		
·							

Conditions de fonctionnement:

- (1) Température air extérieure 35°C.
- (2) Fluide: Eau Température entrée/sortie: 12/7 °C
- (3) Température air 7°C, Humidité 87%, température de l'eau 40/45°C.
- (4) Niveau puissance sonore en champ libre selon ISO 3744.
- (5) Niveau pression sonore à 10 m en champ libre selon conditions ISO 3744.

3.4.5 GPS Kp

	491	581	751	891	1051	1252
kW	48,7	57,3	74,1	88,3	102,0	121,8
kW	16,5	19,7	23,7	28,9	34,7	41,1
Α	34,4	38,3	42,7	51,8	62,9	76,7
-	3,0	2,9	3,1	3,1	2,9	3,0
mc/h	8,4	9,9	12,8	15,2	17,5	20,9
kPa	36,6	28,1	14,3	19,5	26,5	12,1
kW	58,2	67,2	81,4	100,7	116,1	140,0
kW	15,8	18,5	22,8	27,9	32,8	39,0
Α	34,2	37,1	41,6	50,6	60,5	74,2
-	3,7	3,6	3,6	3,6	3,5	3,6
mc/h	10,0	11,6	14,0	17,3	20,0	24,1
kPa						22,4
kW	49,0	58,4	73,8	88,2	102,5	126,0
kW	64,5	76,8	94,7	114,1	133,8	161,8
kW						35,8
-						7,9
mc/h						27,8
						29,1
						21,7
						12,8
	1"1/4 Gas M					2"1/2 Vio
	2" Vic					2"1/2 Vic
n°	1	1		1	1	2
	1	1	1	1	1	2
ka	9.5	9.5	9,5	12.5	12.5	14,5
5						0,02
kg						0,29
n°	2	2	2	2	2	3
mc/h						60450
						4,1
Α	4,4	4,4	6,3	6,3	6,3	9,4
kg	1420	1426	1522	1608	1614	2026
kg kg	1420 1423	1426 1429	1522 1529	1608 1614	1614 1620	2026 2040
kg kg	1420 1423		1522 1529	1608 1614	1614 1620	2026 2040
	1423	1429	1529	1614	1620	2040
kg mm	1423 2660	1429 2660	1529 2660	1614 2660	1620 2660	2040 3700
kg	2660 1370	2660 1370	1529 2660 1370	1614 2660 1370	1620 2660 1370	2040 3700 1370
kg mm mm	1423 2660	1429 2660	1529 2660	1614 2660	1620 2660	2040 3700
kg mm mm	2660 1370 2420	2660 1370 2420	2660 1370 2420	2660 1370 2420	2660 1370 2420	3700 1370 2420
kg mm mm	2660 1370 2420	2660 1370 2420	2660 1370 2420	1614 2660 1370 2420	2660 1370 2420	3700 1370 2420
kg mm mm	2660 1370 2420	2660 1370 2420	2660 1370 2420	2660 1370 2420	2660 1370 2420	3700 1370 2420
mm mm mm	2660 1370 2420 85 53	2660 1370 2420 89 57	1529 2660 1370 2420 91 59	2660 1370 2420 93 61	2660 1370 2420 93 61	2040 3700 1370 2420 94 62
mm mm mm	2660 1370 2420 85 53 400/3+N/50	2660 1370 2420 89 57 400/3+N/50	1529 2660 1370 2420 91 59 400/3+N/50	1614 2660 1370 2420 93 61 400/3+N/50	2660 1370 2420 93 61 400/3+N/50	2040 3700 1370 2420 94 62 400/3+N/5
mm mm mm	2660 1370 2420 85 53	2660 1370 2420 89 57	1529 2660 1370 2420 91 59	2660 1370 2420 93 61	2660 1370 2420 93 61	2040 3700 1370 2420
	A - mc/h kPa kW kW A - mc/h kPa kW kW - mc/h kPa mc/h kPa mc/h kPa mc/h kPa n° n°	A 34,4 - 3,0 mc/h 8,4 kPa 36,6 kW 58,2 kW 15,8 A 34,2 - 3,7 mc/h 10,0 kPa 15,5 kW 49,0 kW 64,5 kW 15,5 - 7,3 mc/h 11,1 kPa 19,2 mc/h 8,4 kPa 29,4 1"1/4 Gas M 2" Vic n° 1 n° 1 kg 9,5 0,02 kg 0,19 n° 2 mc/h 18960 kW 0,9	A 34,4 38,3 - 3,0 2,9 mc/h 8,4 9,9 kPa 36,6 28,1 kW 58,2 67,2 kW 15,8 18,5 A 34,2 37,1 - 3,7 3,6 mc/h 10,0 11,6 kPa 15,5 20,0 kW 49,0 58,4 kW 64,5 76,8 kW 15,5 18,4 - 7,3 7,2 mc/h 11,1 13,2 kPa 19,2 25,5 mc/h 8,4 10,0 kPa 29,4 29,1 1"1/4 Gas M 2" Vic 2" Vic n° 1 1 n° 1 1 kg 9,5 9,5 0,02 0,02 kg 0,19 0,19 n° 2 2 mc/h 18960 19660 kW 0,9 1,0	A 34,4 38,3 42,7 - 3,0 2,9 3,1 mc/h 8,4 9,9 12,8 kPa 36,6 28,1 14,3 kW 58,2 67,2 81,4 kW 15,8 18,5 22,8 A 34,2 37,1 41,6 - 3,7 3,6 3,6 mc/h 10,0 11,6 14,0 kPa 15,5 20,0 10,5 kW 49,0 58,4 73,8 kW 64,5 76,8 94,7 kW 15,5 18,4 20,9 - 7,3 7,2 7,9 mc/h 11,1 13,2 16,3 kPa 19,2 25,5 13,7 mc/h 8,4 10,0 12,7 kPa 29,4 29,1 14,1 1"1/4 Gas M 1"1/4 Gas M 2" Vic 2" Vic 2" Vic 2"1/2 Vic n° 1 1 1 1"1/4 Gas M 1"1/4 Gas M 2" Vic 2" Vic 2" Vic 2"1/2 Vic n° 1 1 1 kg 9,5 9,5 9,5 9,5 0,02 0,02 0,02 kg 0,19 0,19 0,19 n° 2 2 2 2 mc/h 18960 19660 38800 kW 0,9 1,0 2,6	A 34,4 38,3 42,7 51,8 - 3,0 2,9 3,1 3,1 mc/h 8,4 9,9 12,8 15,2 kPa 36,6 28,1 14,3 19,5 kW 58,2 67,2 81,4 100,7 kW 15,8 18,5 22,8 27,9 A 34,2 37,1 41,6 50,6 - 3,7 3,6 3,6 3,6 mc/h 10,0 11,6 14,0 17,3 kPa 15,5 20,0 10,5 15,3 kW 49,0 58,4 73,8 88,2 kW 64,5 76,8 94,7 114,1 kW 15,5 18,4 20,9 25,9 - 7,3 7,2 7,9 7,7 mc/h 11,1 13,2 16,3 19,6 kPa 19,2 25,5 13,7 19,2 mc/h 8,4 10,0 12,7 15,2 kPa 29	A 34,4 38,3 42,7 51,8 62,9 - 3,0 2,9 3,1 3,1 2,9 mc/h 8,4 9,9 12,8 15,2 17,5 kPa 36,6 28,1 14,3 19,5 26,5 kW 58,2 67,2 81,4 100,7 116,1 kW 15,8 18,5 22,8 27,9 32,8 A 34,2 37,1 41,6 50,6 60,5 - 3,7 3,6 3,6 3,6 3,5 mc/h 10,0 11,6 14,0 17,3 20,0 kPa 15,5 20,0 10,5 15,3 19,8 kW 49,0 58,4 73,8 88,2 102,5 kW 64,5 76,8 94,7 114,1 133,8 kW 15,5 18,4 20,9 25,9 31,3 - 7,3 7,2 7,9 7,7

Conditions de fonctionnement:

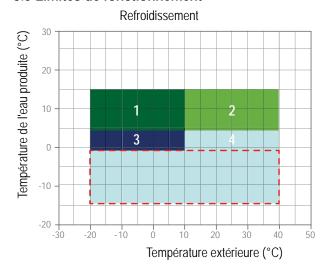
- (1) Fluide: Eau Température entrée/sortie: 12/7 °C air 35°C.
- (2) Fluide: Eau Température entrée/sortie: 40/45 °C air 7°C/87%UR.
- (3) Temperatura in/out utenza fredda: 12/7°C Temperatura in/out utenza calda: 40/45°C.
- (4) Température air 35°C.
- (5) Niveau puissance sonore en champ libre selon ISO 3744.
- (6) Niveau pression sonore à 10 m en champ libre selon conditions ISO 3744.

GPS Kp		1452	1752	2052	2552	2852
Refroidissement (1)						
Puissance refroidissement	kW	143,9	173,3	202,7	253,1	284,6
Puissance consommée	kW	46,7	57,3	69,1	87,5	99,0
Courant absorbé nominal	Α	83,0	102,9	125,5	163,4	189,0
EER	-	3,1	3,0	2,9	2,9	2,9
Débit d'eau	mc/h	24,7	29,8	34,9	43,5	48,9
Perte de charge	kPa	16,3	22,8	20,5	17,8	22,0
Chauffage (2)		12/2		==,=		
Puissance thermique	kW	165,0	202,3	230,2	283,0	325,5
Puissance consommée	kW	44,4	55,1	64,5	78,0	91,2
Courant absorbé nominal	А	79,7	99,9	118,8	154,3	183,9
COP	-	3,7	3,7	3,6	3,6	3,6
Débit d'eau	mc/h	28,4	34,8	39,6	48,7	56,0
Perte de charge	kPa	30,2	28,2	35,8	20,8	27,8
Refroidissement pendant le chauffage ⁽³⁾	M u	30,2	20,2	33,0	20,0	27,0
Puissance refroidissement	kW	147,0	175,4	207,9	262,5	290,9
Puissance thermique	kW	188,8	226,2	268,6	340,2	377,5
Puissance consommée	kW	41,8	50,8	60,7	77,7	86,7
ER	-	8,0	7,8	7,7	7,7	7,6
Débit d'eau	mc/h	32,5	38,9	46,2	58,5	64,9
Perte de charge	kPa	38,3	34,5	47,0	29,7	35,9
Débit d'eau	mc/h	25,3	30,2	35,8	45,2	50,0
	kPa	25,5 17,0	23,3	21,4	18,9	22,7
Perte de charge	KPa	2"1/2 Vic	23,3 3" Vic	21,4 3" Vic	18,9 3" Vic	3" Vic
Diamètres connections hydrauliques chaud		2 1/2 VIC 2"1/2 Vic	3" Vic	3" Vic	3" Vic	3" Vic
Diamètres connections hydrauliques froid	un 0					
Circuits	n°	2	2	2	2	2
Compresseurs	n°	2	2	2	2	2
Réfrigérant R290	l.a.	10.0	24.0	24.5	20.5	27.5
Charge fréon	kg	18,0	24,0	24,5	30,5	36,5
Potentiel réchauffement global (GWP)		0,02	0,02	0,02	0,02	0,02
Tonnes équivalent CO ₂	kg	0,36	0,48	0,49	0,61	0,73
Ventilateurs Axiaux (4)		_			_	_
Quantité	n°	3	4	4	5	5
Débit air total	mc/h	58860	75720	80040	100900	117800
Puissance absorbé nominal	kW	4,2	5,5	5,7	7,3	9,6
Courant absorbé nominal	А	9,5	12,7	12,6	15,8	22,6
Poids						
Poids de transport	kg	2086	2480	2512	3090	3228
Poids en fonctionnement	kg	2101	2494	2536	3122	3259
Dimensions						
Longueur	mm	3700	4850	4850	5890	5890
_argeur	mm	1370	1370	1370	1370	1370
Hauteur	mm	2420	2420	2420	2420	2420
liveaux sonore						
WA totale de l'unité (5)		94	95	95	98	98
SPL totale de l'unité (6)		62	63	63	66	65
Alimentation électrique						
Tension/Phases/Fréquence	V/ph/Hz	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/5
		106	138	165	219	232
Courant consommé maximal	Α	100	130	100	219	232

Conditions de fonctionnement:

- (1) Fluide: Eau Température entrée/sortie: 12/7 °C air 35°C.
- (2) Fluide: Eau Température entrée/sortie: 40/45 °C air 7°C/87%UR.
- (3) Temperatura in/out utenza fredda: 12/7°C Temperatura in/out utenza calda: 40/45°C.
- (4) Température air 35°C.
- (5) Niveau puissance sonore en champ libre selon ISO 3744.
- (6) Niveau pression sonore à 10 m en champ libre selon conditions ISO 3744.

Chauffage


10

Température extérieure (°C)

20

3.5 Limites de fonctionnement

[empérature de l'eau produite (°C)

- []]
 - Unités "brine" en mode de refroidissement
- 1 Refroidissement avec contrôle pression fluide
- 2 Refroidissement
- 3 Refroidissement avec contrôle pression fluide et glycol

3.5.1 Débit d'eau échangeur côté utilisateur

Le débit d'eau nominale est calculé sur un écart thermique à l'évaporateur de 5K. Le débit d'eau maximum admissible est calculée sur un écart thermique de 3K. Des valeurs supérieures peuvent provoquer des pertes de charge trop élevées. Le débit d'eau minimum admissible est calculé sur un écart thermique de 8K. Débits d'eau insuffisants peuvent causer température non conformes dans le circuit frigorifique avec conséquente l'intervention des organismes de sécurité et arrêt de l'unité.

Les unités sont assemblées selon les standards techniques et le normes de sécurité en vigueur dans la Communauté Européenne. Les unités sont conçues exclusivement pour le refroidissement et/ou le chauffage de solutions liquides et doivent être destinées à cet usage selon leur version (refroidissement seul, pompe à chaleur ou unité polyvalente) et leurs prestations. Le Fabricant est exempté de toute responsabilité contractuelle et extra-contractuelle pour dommages causés à personnes, animaux et choses dérivant

d'erreurs d'installation, réglage et maintenance ou par usage inapproprié. Toutes les applications ne pas expressement indiquées dans ce manuel ne sont pas admis.

En cas de fonctionnement en dehors de ces valeurs on vous prie de contacter le Fabricant.

Dans le cas où l'unité soit installée en zones particulièrement exposées au vent, il est nécessaire prévoir des barrières pour éviter dysfonctionnements. On recommande l'installation des barrières si la vitesse du vent dépasse les 2,5 m/s.

Les appareils, en configuration standard, ne sont pas conçus pour installation en milieu salin.

Si le fonctionnement est requis en mode refroidissement avec des températures extérieures inférieures à 20°C, un contrôle de pression d'évaporation/condensation (BT) doit être utilisée. Ce dispositif permet d'opérer en conditions d'air ambiante supérieures à 15°C en mode chaud et inférieures à 20°C en mode froid. Le dispositif régule le débit de l'air Mesuré par un transducteur pour garantir, de cette façon, des paramètres corrects de fonctionnement. Ce dispositif peut être utilisé entre-autre, pour réduire les émissions de bruit de l'unité en mode froid quand la température ambiante est en diminution (par exemple la nuit). Le contrôle est paramètré en usine. Les valeurs ne doivent jamais être modifiées.

3.6 Facteurs de correction

3.6.1 Facteurs de correction avec glycol

Pourcentage de glycol	Point de givrage (°C)	CCF	IPCF	WFCF	PDCF
10	-3,2	0,985	1	1,02	1,08
20	-7,8	0,98	0,99	1,05	1,12
30	-14,1	0,97	0,98	1,09	1,22
40	-22,3	0,965	0,97	1,14	1,25
50	-33,8	0,955	0,965	1,2	1,33

CCF: Facteur de correction capacité. WFCF: Facteur de correction débit eau.

IPCF: Facteur de correction puissance absorbée. PDCF: Facteur de correction pertes de charge.

Les facteurs de correction du débit eau et des pertes de charge doivent être appliqués aux valeurs obtenus sans glycol. Le facteur de correction du débit eau est calculé de façon à maintenir le même écart qu'on obtiendrait sans glycol. Le facteur de correction des pertes de charge est appliqué à la valeur de débit eau corrigée avec le facteur de correction rélatif.

3.6.2 Facteurs de correction diffèrent Δt

Différence temp. eau (°C)	3	5	8
CCCP	0,99	1	1,02
IPCF	0,99	1	1,01

CCCP = Facteur de correction puissance frigorifique

IPCF = Facteur de correction puissance absorbée

3.6.3 Facteurs de correction par facteur d'encrassement

Facteur d'encrassement	0,00005	0,0001	0,0002
CCCP	1	0,98	0,94
IPCF	1	0,98	0,95

CCCP = Facteur de correction puissance frigorifique

IPCF = Facteur de correction puissance absorbée

3.7 Niveaux sonores

Les niveaux sonores rapportés sont calculés dans les conditions de fonctionnement en refroidissement seul.

			R.A	AS MC Kp	/ RAS MC	VB Kp					
				Bande o	l'octave (I	Hz)			Lw	Lp1	Lp10
Mod.	63	125	250	500	1K	2K	4K	8K	4D(V)	dB(A)	dB(A)
	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	UD(A)	UD(A)
RAS 521 MC Kp	56,5	72,4	71,5	77,8	81,9	80,9	76,2	72,8	86,3	67,8	54,3
RAS 591 MC Kp	54,5	73,4	71,0	77,3	84,4	83,4	75,7	75,3	88,1	69,6	56,1
RAS 721 MC Kp	54,5	73,4	71,0	77,3	84,4	83,4	75,7	75,3	88,1	69,6	56,1
RAS 871 MC Kp	58,8	67,7	73,7	85,2	87,1	88,2	78,8	75,4	92,2	73,6	60,2
RAS 1001 MC Kp	58,8	67,7	73,7	85,2	87,1	88,2	78,8	75,4	92,2	73,6	60,2
RAS 1402 MC Kp	59,0	77,9	75,5	81,8	88,9	87,9	80,2	79,8	92,6	72,9	60,4
RAS 1702 MC Kp	62,3	71,2	77,2	88,7	90,6	91,7	82,3	78,9	95,7	75,9	63,4
RAS 2102 MC Kp	62,3	71,2	77,2	88,7	90,6	91,7	82,3	78,9	95,7	75,9	63,4
RAS 2402 MC Kp	63,8	75,1	81,5	87,8	91,9	90,9	83,2	82,9	96,0	76,2	63,7
RAS 2902 MC Kp	63,8	75,1	81,5	87,8	91,9	90,9	83,2	82,9	96,0	76,2	63,7
RAS 3402 MC Kp	64,6	74,8	80,7	92,2	94,1	95,3	85,8	82,4	99,2	79,1	66,9
RAS 3702 MC VB Kp (version VB uniquement)	65,1	75,3	81,2	92,7	94,6	95,8	86,3	82,9	99,7	79,6	67,4

				R.A	AS F Kp						
				Bande d	l'octave (I	Hz)			Lw	Lp1	Lp10
Mod.	63	125	250	500	1K	2K	4K	8K	dB(A)	dB(A)	dB(A)
	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	ub(A)	UD(A)	ub(A)
RAS 521 F Kp	61,4	67,2	72,2	80,9	85,8	83,0	74,9	71,3	88,9	71,0	57,0
RAS 591 F Kp	60,9	67,6	74,7	80,4	87,4	83,4	78,7	75,3	90,1	72,2	58,2
RAS 721 F Kp	63,9	70,6	74,7	83,4	88,3	86,4	80,4	75,3	91,8	73,9	60,0
RAS 871 F Kp	63,9	69,7	74,7	88,7	90,6	88,7	80,4	75,9	94,5	75,9	62,5
RAS 1001 F Kp	63,9	69,7	74,7	88,7	90,6	88,7	80,4	75,9	94,5	75,9	62,5
RAS 1402 F Kp	66,2	74,1	80,0	85,7	90,9	89,9	82,7	78,8	94,7	76,1	62,7
RAS 1702 F Kp	64,7	70,5	78,5	87,7	89,6	90,7	81,3	77,9	94,7	75,6	62,6
RAS 2102 F Kp	66,7	72,5	80,5	89,7	91,6	92,7	83,3	79,9	96,7	77,6	64,6
RAS 2402 F Kp	67,2	75,1	81,5	89,7	91,9	90,9	86,2	82,9	96,5	76,8	64,3
RAS 2902 F Kp	67,9	74,6	81,7	87,4	94,4	90,4	85,7	82,4	97,1	77,4	64,8
RAS 3402 F Kp	67,4	74,8	81,2	92,2	94,1	95,3	85,8	82,4	99,2	79,5	66,9
				P.	AS Kp						
				Bande d	l'octave (l	Hz)			Lw	Lp1	Lp10
Mod.	63	125	250	500	1K	2K	4K	8K	dB(A)	dB(A)	dB(A)
	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	ub(A)	UD(A)	ub(A)
451 Kp	56,6	63,5	68,0	75,1	81,5	77,9	71,9	69,8	84,3	66,5	52,4
521 Kp	56,6	63,5	68,0	75,1	81,5	78,9	71,9	70,8	84,6	66,8	52,7
651 Kp	55,1	71,3	70,0	76,3	80,4	79,4	74,7	71,3	84,8	66,3	52,9
731 Kp	55,1	71,3	71,5	77,8	84,9	83,9	76,2	75,8	88,6	70,1	56,6
881 Kp	61,6	71,1	76,0	83,1	87,9	83,9	79,9	75,8	91,0	72,5	59,0
1001 Kp	61,6	68,7	76,0	86,2	88,1	89,2	79,9	76,4	93,2	74,7	61,2
•											
1201 Kp	61,6	68,7	76,0	86,2	88,1	89,2	79,9	76,4	93,2	74,7	61,2
1502 Kp	63,4	71,1	77,8	84,9	90,9	86,9	82,2	78,8	93,7	74,6	61,6
1702 Kp	63,4	71,1	77,8	84,9	90,9	86,9	82,2	78,8	93,7	74,6	61,6
2102 Kp	63,6	70,7	78,0	88,2	90,1	91,2	81,9	78,4	95,2	75,6	63,0
2502 Kp	63,6	70,7	78,0	88,2	90,1	91,2	81,9	78,4	95,2	75,6	63,0
2902 Kp	65,6	74,1	80,5	87,1	90,9	89,9	85,2	81,9	95,2	75,1	62,9
3402 Kp	67,7	74,1	80,5	88,5	90,9	89,9	85,2	81,9	95,5	75,4	63,1
				G	PS Kp						
				Bande d	l'octave (l	Hz)			Lw	Lp1	Lp10
Mod.	63	125	250	500	1K	2K	4K	8K		-	-
	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
491 Kp	49,0	67,0	72,0	76,3	80,4	79,4	74,7	71,3	84,8	66,3	52,8
581 Kp	49,0	68,1	74,5	77,8	84,9	83,9	76,2	75,8	88,6	70,1	56,6
751 Kp	61,6	71,1	76,0	83,1	87,9	83,9	79,9	75,8	91,0	72,5	59,0
891 Kp	61,6	68,7	76,0	86,2	88,1	89,2	79,9	76,4	93,2	74,7	61,2
1051 Kp	61,6	68,7	76,0	86,2	88,1	89,2	79,9	76,4	93,2	74,7	61,2
1252 Kp	63,4	71,1	77,8	84,9	90,9	86,9	82,2	78,8	93,7	74,7	61,6
1452 Kp	63,4	71,1	77,8	84,9	90,9	86,9	82,2	78,8	93,7	74,6	61,6
1752 Kp	63,6	70,7	78,0	88,2	90,1	91,2	81,9	78,4	95,2	75,6	63,0
2052 Kp	63,6	70,7	78,0	88,2	90,1	91,2	81,9	78,4	95,2	75,6	63,0
2552 Kp	65,6	74,4	77,0	94,1	92,6	92,2	86,1	82,3	98,3	78,2	65,9
2852 Kp	67,7	81,0	78,3	93,8	91,2	91,5	85,8	82,3	97,7	77,6	65,3

Lw: Niveau de puissance sonore calculé selon ISO 3744.

Lp1: Niveau de pression sonore mesuré en champ libre à 1 mètres de l'unité, facteur de directivité Q=2, selon ISO 3744.

Lp10: Niveau de pression sonore mesuré en champ libre à 10 mètres de l'unité, facteur de directivité Q=2, selon ISO 3744.

4. INSTALLATION

4.1 Avertissements généraux et utilisation de symboles

Avant d'effectuer toute opération chaque opérateur doit connaître parfaitement le fonctionnement de la machine et de ses commandes, doit avoir lu toutes informations contenues dans le présent manuel.

Toute opération effectuée sur la machine doit être exécutée par du personnel qualifié dans le respect des normes nationales du pays de destination.

Lorsque l'unité contient du gaz frigorigène inflammable, le personnel habilité à effectuer toute opération sur la machine doit être formé de manière appropriée.

L'installation et la maintenance de la machine doivent être exécutées dans le respect de la normative nationale en vigueur.

Ne pas s'approcher et n'insérer aucun objet dans les parties en mouvement.

4.2. Sécurité et santé du personnel

Le lieu de travail de l'opérateur doit être maintenu propre, ordonné et libre de tout objet qui puisse limiter le mouvement. Le lieu de travail doit être illuminé de manière adéquate aux opérations prévues. Une illumination insuffisante ou excessive peut comporter des risques.

S'assurer de toujours garantir une aération optimale du lieu de travail et que les systèmes d'aspiration soient toujours fonctionnels, en parfait état et conformes aux normatives en vigueur.

4.3 Equipement de protection individuelle

Les opérateurs qui effectuent l'installation et la maintenance de la machine se doivent de porter les équipements de protection prévus par la loi et indiqués de suite.

Chaussures de protection.

Protection des yeux.

Gants de protection.

Protection Respiratoire.

Protection de l'ouïe.

4.4 Réception et contrôle du matériel

Lors de l'installation ou lorsque on doit intervenir sur l'unité, il est nécessaire de respecter scrupuleusement les instructions énoncées dans ce manuel, observer les indications sur l'unité et encore appliquer toutes les précautions nécessaires. Le non-respect des normes énoncées peut provoquer des situations dangereuses. À la réception de l'unité vérifier son intégrité: la machine a quitté l'usine en parfait état; d'éventuels dommages doivent être immédiatement contestés au transporteur et enregistrés dans le Bon de Livraison avant de le signer. Le Fabriquant doit être informée, sous 8 jours, sur l'étendue des dommages. Le Client doit remplir un rapport écrit en cas de dégâts importants.

Avant acceptation contrôler:

- Que la machine n'ait pas subi de dégâts durant le transport;
- Que le matériel livré corresponde à ce qui est indiqué sur le bon de livraison.

En cas de dégâts ou anomalies:

- Noter immediatement les dégâts sur le bon de livraison:
- Informer le Fabriquant, sous 8 jours de la réception, sur l'étendue des dommages. Les signalisations audelà de cette limite ne seront pas prises en compte.
- En cas de dommages importants établir un rapport écrit.

4.5 Transport et manipulation

En conformité à la norme EN 378-1, l'unité peut être classifiée comme un Système Indirect Fermé. La charge et le type du réfrigérant sont reportés sur la plaquette de l'unité.

La manipulation de l'unité doit être réalisé par du personnel expert, équipé par des dispositifs convenables au poids et aux dimensions de la machine. Pendant la manipulation, l'unité doit être toujours maintenue en position verticale (avec le châssis parallèle au sol).

La société qui s'occupe du transport est toujours responsable d'éventuels dommages pendant le transport, des unités transportées. Avant d'installer et de préparer l'unité à la mise en service, il est nécessaire d'effectuer une inspection visuelle pour vérifier l'intégrité de l'emballage et que l'unité ne présente pas des dommages visibles ou pertes d'huile ou de réfrigérant. Vérifier en plus que l'unité corresponde aux spécifications commandées.

Dommages ou réclamations doivent être signalés au Fabriquant ou au Transporteur par écrit sous 8 jours de la réception de la marchandise.

Si un ou plus composants sont endommagés, ne pas mettre en service l'unité et informer tout de suite le Fabriquant du problème, en accordant avec lui les actions à prévoir.

Il est envisageable de déplacer l'emballage sur le lieu effectif d'installation. La manipulation interne doit être réalisée avec le plus grand soin, sans utiliser les composants de l'appareil comme point d'appui. Il est essentiel d'éviter tous les dommages pendant la manipulation de l'unité.

Le circuit hydraulique doit être complètement vidangé avant de manipuler l'unité en aucune façon.

Le soulèvement de l'unité doit être vertical, réalisé préférablement par chariot élévateur. Utiliser une poutre de distribution, si on utilise des sangles ou des câbles pour l'élingage, en s'assurant que pas de pression soit présente sur les bords supérieurs de l'unité ou sur l'emballage.

ATTENTION:

Les réfrigérant présent dans l'unité est inflammable.

L'unité peut être installée seulement à l'extérieur, loin de toutes sources d'ignition.

4.6 Stockage

Dans le cas où on nécessite de stocker l'unité, la laisser emballée dans un lieu fermé. Si pour une raison quelconque la machine soit déjà déballée suivre les instructions suivantes pour éviter l'endommagement, la corrosion et/où la dégradation:

- Vérifier que toutes les ouvertures soient bien fermées et celées;
- Pour nettoyer l'unité n'utiliser jamais vapeur ou autres détergents qui pourraient l'endommager;
- Retirer et confier au responsable de chantier éventuelles clefs d'accès au tableau de contrôle.

L'unité peut être stockée à des températures entre -20°C et 60 °C. Pendant la période de non-utilisation, pour prévenir la corrosion, des dépôts ou des ruptures causées par la formation de glace, il est essentiel que les échangeurs, coté utilisateur, soient complètement vides, ou équipées avec de l'eau glycolée.

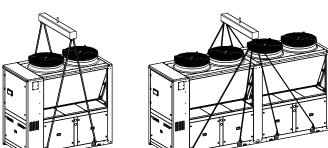
4.7 Déballage

L'emballage pourrait résulter dangereux pour les opérateurs.

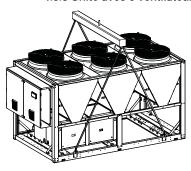
C'est conseillé de laisser les unités emballées durant toute manutention et d'enlever l'emballage seulement au moment de l'installation. L'emballage de l'unité doit être retiré soigneusement pour ne pas endommager l'unité. L'emballage peut être constitué par des matériaux de nature différente (bois, carton, nylon, etc.).

Les matériaux d'emballage doivent être conservés séparément et remis pour le traitement ou l'éventuel recyclage aux entreprises préposées pour réduire l'impact environmental.

4.8 Levage et manutention


Durant le déchargement et la mise en place de l'unité, il faut avoir soin d'éviter des manoeuvres brusques ou violentes afin de protéger les composants internes. Les unités peuvent être soulevées par le biais d'un chariot élévateur ou, en alternative, avec des sangles, toute en faisant attention de ne pas endommager les panneaux latéraux et supérieurs de l'unité. L'unité doit toujours rester en position horizontale durant ces opérations.

Les ailettes des batteries sont tranchantes. Utiliser des gants de protection.



4.8.1 Unité avec 2 ventilateurs

4.8.2 Unité avec 4 ventilateurs

4.8.3 Unité avec 6 ventilateurs

4.9 Positionnement et espaces techniques minimum

Tous les modèles de la série sont projetés et construits pour installations externes; donc on ne doit pas absolument couvrir par toiture ou placer des plantes ou parois prés de la machine afin d'éviter la recirculation de l'air. C'est une bonne norme la création d'une plaque de support avec adéquates dimensions auxquelles de l'unité. Les unités transmettent au sol un faible niveau de vibrations: cependant il est conseillée l'utilisation de supports antivibratils entre châssis d'embase et le plan d'appui. C'est très important éviter la recirculation entre aspiration et soufflage, peine la dégradation des performances de l'unité ou même interruption du normal fonctionnement. À cet égard c'est nécessaire de garantir les espaces minimum de service indiqués cidessous.

Pour une question de sécurité, à l'intérieur de cette zone, aucun appareil, installation ou source d'ignition ne devra pas être installé, et les surfaces ne devraient pas dépasser une température inférieure à 100K de la température d'auto-inflammation du réfrigérant utilisé. Si l'unité est installée dans une zone avec des présences de classe A (générique) ou classe B (avec supervision) selon la norme EN 378-1, par. 4.2, des dispositions spécifiques, afin que seulement les personnes autorisées se puissent approcher à la machine, en entrant dans la zone de respect, doivent être prévues.

L'unité doit être installée le plus loin possible et, en tous les cas, à une distance de 3 mètres de distance au moins, des installations de drainage ou électriques, de façon d'éviter la propagation d'atmosphères potentiellement explosives, en cas de perte de réfrigérant.

En tous les cas, les installations placées en proximité de la machine devraient être remplies avec la sable ou équipées par siphon. Les conduits enterrés devraient être installée à une profondeur de 0,80 m sous le niveau du sol.

Les installations se devraient inspecter au moins tous les 6 mois, pour vérifier que les dispositions pour prévenir la propagation d'atmosphères explosives soient efficaces.

Le groupe devra être installé de façon que les éventuelles pertes de réfrigérant ne vont pas à pénétrer à l'intérieur de bâtiments ou milieux fermés.

Positionner la machine de façon à garantir l'accès pour maintenance ordinaire et extra-ordinaire. D'éventuels coûts relatifs à plateformes ou moyens de manutention nécessaires pour intervention ne seront pas couverts par la garantie.

Le site d'installation doit être conforme aux normes EN 378 1 et 378 3. Il faut considérer tous les risques survenant d'éventuelles fuites de gaz réfrigérant au moment de l'individuation du site d'installation.

A E B B

Fig. 1 *Fig. 2

RAS MC Kp / RAS MC VB Kp	А	В	С	D	Е	F
521	2570	2590	1370	2000	2000	2000
591	2570	2590	1370	2000	2000	2000
721	2570	2590	1370	2000	2000	2000
871	2570	2590	1370	2000	2000	2000
1001	2570	2590	1370	2000	2000	2000
1402	2570	4830	1370	2000	2000	2000
1702	2570	4830	1370	2000	2000	2000
2102	2570	4830	1370	2000	2000	2000
2402	2570	4830	1370	2000	2000	2000
2902	2570	4830	1370	2000	2000	2000
*3402	2480	4420	2260	2000	2000	2000
*3702 MC VB Kp	2480	4420	2260	2000	2000	2000
0702 MO 13 Np	2 100	1120	2200	2000	2000	2000
RAS F Kp	А	В	С	D	Е	F
521	2420	1830	1370	2000	2000	2000
591	2420	1830	1370	2000	2000	2000
721	2420	1830	1370	2000	2000	2000
871	2420	2770	1370	2000	2000	2000
1001	2420	2770	1370	2000	2000	2000
1402	2420	2770	1370	2000	2000	2000
1702	2420	3790	1370	2000	2000	2000
2102	2420	3790	1370	2000	2000	2000
2402	2420	4990	1370	2000	2000	2000
2902	2420	4990	1370	2000	2000	2000
3402	2420	4990	1370	2000	2000	2000
PAS Kp	А	В	С	D	Е	F
451	2420	1660	1370	2000	2000	2000
521	2420	1660	1370	2000	2000	2000
651	2420	2590	1370	2000	2000	2000
731	2420	2590	1370	2000	2000	2000
004		_0,0				
881	2420	2590	1370	2000	2000	2000
881 1001			1370 1370	2000 2000		2000 2000
	2420	2590			2000	
1001	2420 2420	2590 2590	1370	2000	2000 2000	2000
1001 1201	2420 2420 2420	2590 2590 2590	1370 1370	2000 2000	2000 2000 2000	2000 2000
1001 1201 1502	2420 2420 2420 2420	2590 2590 2590 3630	1370 1370 1370	2000 2000 2000	2000 2000 2000 2000	2000 2000 2000
1001 1201 1502 1702	2420 2420 2420 2420 2420	2590 2590 2590 3630 3630	1370 1370 1370 1370	2000 2000 2000 2000	2000 2000 2000 2000 2000	2000 2000 2000 2000
1001 1201 1502 1702 2102	2420 2420 2420 2420 2420 2420	2590 2590 2590 3630 3630 4990	1370 1370 1370 1370 1370	2000 2000 2000 2000 2000	2000 2000 2000 2000 2000 2000	2000 2000 2000 2000 2000
1001 1201 1502 1702 2102 2502	2420 2420 2420 2420 2420 2420 2420	2590 2590 2590 3630 3630 4990 4990	1370 1370 1370 1370 1370 1370	2000 2000 2000 2000 2000 2000	2000 2000 2000 2000 2000 2000 2000	2000 2000 2000 2000 2000 2000
1001 1201 1502 1702 2102 2502 2902	2420 2420 2420 2420 2420 2420 2420 2420	2590 2590 2590 3630 3630 4990 4990 6030	1370 1370 1370 1370 1370 1370 1370	2000 2000 2000 2000 2000 2000 2000	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000
1001 1201 1502 1702 2102 2502 2902 3402	2420 2420 2420 2420 2420 2420 2420 2420	2590 2590 2590 3630 3630 4990 4990 6030	1370 1370 1370 1370 1370 1370 1370	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200
1001 1201 1502 1702 2102 2502 2902 3402 GPS Kp	2420 2420 2420 2420 2420 2420 2420 2420	2590 2590 2590 3630 3630 4990 4990 6030 6030 B	1370 1370 1370 1370 1370 1370 1370 1370	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200
1001 1201 1502 1702 2102 2502 2902 3402 GPS Kp	2420 2420 2420 2420 2420 2420 2420 2420	2590 2590 2590 3630 3630 4990 4990 6030 6030	1370 1370 1370 1370 1370 1370 1370 1370	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200
1001 1201 1502 1702 2102 2502 2902 3402 GPS Kp 491 581	2420 2420 2420 2420 2420 2420 2420 2420	2590 2590 2590 3630 3630 4990 4990 6030 6030 B 2590 2590	1370 1370 1370 1370 1370 1370 1370 1370	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200
1001 1201 1502 1702 2102 2502 2902 3402 GPS Kp 491 581 751	2420 2420 2420 2420 2420 2420 2420 2420	2590 2590 2590 3630 3630 4990 4990 6030 6030 B 2590 2590 2590	1370 1370 1370 1370 1370 1370 1370 1370	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200
1001 1201 1502 1702 2102 2502 2902 3402 GPS Kp 491 581 751	2420 2420 2420 2420 2420 2420 2420 2420	2590 2590 2590 3630 3630 4990 4990 6030 6030 B 2590 2590 2590 2590	1370 1370 1370 1370 1370 1370 1370 1370	2000 2000 2000 2000 2000 2000 2000 D 2000 2000 2000 2000 2000 2000	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200
1001 1201 1502 1702 2102 2502 2902 3402 GPS Kp 491 581 751 891 1051	2420 2420 2420 2420 2420 2420 2420 2420	2590 2590 2590 3630 3630 4990 4990 6030 6030 B 2590 2590 2590 2590 2590	1370 1370 1370 1370 1370 1370 1370 1370	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200
1001 1201 1502 1702 2102 2502 2902 3402 GPS Kp 491 581 751 891 1051 1252	2420 2420 2420 2420 2420 2420 2420 2420	2590 2590 2590 3630 3630 4990 6030 6030 B 2590 2590 2590 2590 2590 2590 3630	1370 1370 1370 1370 1370 1370 1370 1370	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200
1001 1201 1502 1702 2102 2502 2902 3402 GPS Kp 491 581 751 891 1051 1252 1452	2420 2420 2420 2420 2420 2420 2420 2420	2590 2590 2590 3630 3630 4990 4990 6030 6030 B 2590 2590 2590 2590 2590 2590 3630 3630	1370 1370 1370 1370 1370 1370 1370 1370	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200
1001 1201 1502 1702 2102 2502 2902 3402 GPS Kp 491 581 751 891 1051 1252 1452 1752	2420 2420 2420 2420 2420 2420 2420 2420	2590 2590 2590 3630 3630 4990 4990 6030 6030 B 2590 2590 2590 2590 2590 3630 3630 4990	1370 1370 1370 1370 1370 1370 1370 1370	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200
1001 1201 1502 1702 2102 2502 2902 3402 GPS Kp 491 581 751 891 1051 1252 1452 1752 2052	2420 2420 2420 2420 2420 2420 2420 2420	2590 2590 2590 3630 3630 4990 4990 6030 6030 B 2590 2590 2590 2590 2590 3630 3630 4990 4990	1370 1370 1370 1370 1370 1370 1370 1370	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200

4.10 Carte d'interface RS485 (INSE)

Carte d'interface pour se relier au système de supervision (disponible seulement avec système de supervision MODBUS RS485). Ce système permet la visualisation déportée de tous les paramètres de fonctionnement de l'unité ainsi que la modification des valeurs. Dans le cas où elle soit fournie non installée, il est nécessaire de respecter la polarité des connexions comme illustré dans le schéma. L'éventuelle inversion de la polarité va déterminer le bon fonctionnement de l'unité. Le câble de connexion de la supervision doit être de type téléphonique 2x0,25 mm². L'unité est configurée en usine avec adresse série 1. Dans le cas de système MODBUS il est possible de demander la liste des variables en contactant le SAV.

4.11 Raccords filetés

RAS F Kp		
521	54 mm	Compressor suction flange
591	54 mm	Compressor suction flange
721	54 mm	Compressor suction flange
871	67 mm	Compressor suction flange
1001	67 mm	Compressor suction flange
1402	54 mm	Compressor suction flange
1702	67 mm	Compressor suction flange
2102	67 mm	Compressor suction flange
2402	108 mm	Filter cartridge
2902	108 mm	Filter cartridge
3402	108 mm	Filter cartridge

RAS MC Kp		
521	54 mm	Compressor suction flange
591	54 mm	Compressor suction flange
721	54 mm	Compressor suction flange
871	67 mm	Compressor suction flange
1001	67 mm	Compressor suction flange
1402	54 mm	Compressor suction flange
1702	67 mm	Compressor suction flange
2102	67 mm	Compressor suction flange
2402	108 mm	Filter cartridge
2902	108 mm	Filter cartridge
3402	108 mm	Filter cartridge

RAS MC VB Kp		
521	54 mm	Compressor suction flange
591	54 mm	Compressor suction flange
721	54 mm	Compressor suction flange
871	67 mm	Compressor suction flange
1001	67 mm	Compressor suction flange
1402	54 mm	Compressor suction flange
1702	67 mm	Compressor suction flange
2102	67 mm	Compressor suction flange
2402	54 mm	Compressor suction flange
2902	54 mm	Compressor suction flange
3402	67 mm	Compressor suction flange
3702	67 mm	Compressor suction flange

54 mm	Compressor suction flange
54 mm	Compressor suction flange
54 mm	Compressor suction flange
67 mm	Compressor suction flange
67 mm	Compressor suction flange
54 mm	Compressor suction flange
54 mm	Compressor suction flange
67 mm	Compressor suction flange
67 mm	Compressor suction flange
108 mm	Filter cartridge
108 mm	Filter cartridge
	54 mm 54 mm 67 mm 67 mm 54 mm 67 mm 67 mm 108 mm

PAS Kp		
451	42 mm	Compressor suction flange
521	42 mm	Compressor suction flange
651	54 mm	Compressor suction flange
731	54 mm	Compressor suction flange
881	54 mm	Compressor suction flange
1001	67 mm	Compressor suction flange
1201	67 mm	Compressor suction flange
1502	54 mm	Compressor suction flange
1702	54 mm	Compressor suction flange
2102	54 mm	Compressor suction flange
2502	67 mm	Compressor suction flange
2902	108 mm	Filter cartridge
3402	108 mm	Filter cartridge

4.12 Connexions hydrauliques

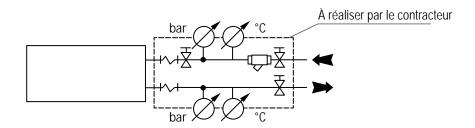
Les connexions hydrauliques doivent être réalisées en conformité aux normes nationales et locales; la tuyauterie doit être réalisée en acier, acier galvanisé, ou PVC. La tuyauterie doit être dimensionnée soigneusement, en accord avec le débit d'eau nominal de l'unité et des pertes de charge du circuit hydraulique. Toutes les liaisons hydrauliques doivent être isolées en utilisant du matériel à cellules fermées d'épaisseur adéquate. L'unité doit être reliée aux tuyaux par le biais de connexions flexibles conçues à cet effet. On recommande d'installer dans le circuit hydraulique les composants suivants:

- · Thermomètres à puits pour la détection de la température du circuit.
- · Clapets manuels pour isoler le réfrigérateur du circuit hydraulique.
- Filtre métallique (installé sur le tuyaux de reprise) avec maille métallique inférieure à 1 mm
- Vannes de purge, vase d'expansion, groupe de chargement et vanne de vidange.

Les diamètres des connexions hydrauliques sont indiqués dans le tableau "Données techniques".

Le tuyaux de retour du système doit être en correspondance de l'étiquette "ACQUA UTENZE IN" en cas contraire l'échangeur pourrait givrer.

Il est obligatoire d'installer un filtre métallique (avec un maillage d'au maximum 1mm) sur le tuyau de retour du circuit avec étiquette "ACQUA UTENZE IN". Si le filtre métallique n'est pas présent la garantie est nulle. Le filtre doit être bien nettoyé après la mise en service et contrôlé régulièrement.


La connexion de la machine au circuit hydraulique doit être réalisée par un technicien expert et qualifié, en conformité aux règlements locales en vigueur.

Il est important que la connexion du groupe à l'installation de façon que la direction du fluide soit dans la bonne direction. À ce regard, les tubes doivent être branchés en respectant les indications reportées en proximité des connexions sur la machine.

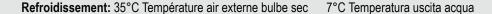
Pour le raccordement des tuyauteries à l'évaporateur, il est conseillable de suivre les prescriptions suivantes:

• Raccorder les tuyauteries comme indiqué dans le schéma ci-dessous:

- Pour éviter toute transmission de vibration et pour consentir les dilations thermiques, on conseille d'installer des raccords anti-vibratiles sur les tuyauteries;
- Pour éviter l'accès de saleté et de corps étrangers, il est nécessaire d'installer sur l'entrée de l'unité un filtre mécanique et nettoyable de maille non supérieure à 1 mm et avec un diamètre nominal approprié, pour contenir les pertes de charge.
- On conseille aussi d'installer des robinets d'isolement, en amont et aval du filtre, pour permettre plus facilement les opérations de nettoyage.
- Le positionnement de thermomètres et manomètres près des raccordements d'entrée et sortie de l'unité permet de vérifier plus facilement si elle fonctionne correctement.
- On doit revêtir le système de l'eau glacée par du matériel anti-condensat à cellules fermées, avec des caractéristiques d'isolement thermique, imperméabilité à la vapeur et d'épaisseur appropriés pour les conditions plus lourdes envisageables pendant le fonctionnement et les arrêts du groupe.
- Pour la connexion de l'unité au système hydraulique, on doit utiliser les raccordements prédisposés indiqués sur le schéma annexe au manuel.
- Après la réalisation du circuit et l'installation de l'unité, il est nécessaire d'effectuer une épreuve d'étanchéité de tout le système, pour détecter des possibles fuites et éventuellement de les réparer, avant son remplissage et la mise en service

Après l'épreuve d'étanchéité réalisée avec de l'eau, si on prévoit la mise en fonction du système après un long intervalle de temps ou, de toute façon, que la température ambiance peut descendre à des valeurs près de 0°C ou inférieures, il sera nécessaire de vidanger le circuit ou prévoir une quantité appropriée de liquide antigel.

Dans les cas où le groupe pompe pour la circulation du fluide à l'intérieur de l'évaporateur n'est pas livré avec l'unité, il est nécessaire que les compresseurs démarrent seulement après l'activation de la pompe.


En cas de rupture de l'échangeur côté utilisateur, le fréon peut entrer dans le circuit hydraulique. Installer donc les ouvertures d'aération à l'extérieur en zone ventilé et loin des égouts ou des drainages, où le fréon se pourrait concentrer et créer des atmosphères explosives. Si pas possible, il est nécessaire de suivre les dispositions de la norme EN-378 dans les milieux fermés où ces ouvertures soient présentes.

Toutes les unités sont livrées avec un senseur de débit ou pressostat différentiel. Si ce dispositif est manipulé, enlevé, ou si le filtre à eau n'est pas présent sur l'unité, la garantie est nulle.

Le débit d'eau à travers l'échangeur utilisateur de l'unité ne doit jamais descendre en dessous d'une valeur telle à générer un Δ t de 8K aux conditions suivantes:

Au premier démarrage l'unité doit être chargée par de l'eau propre et dont caractéristiques chimiques-physique peuvent prévenir de la corrosion ou tout dépôt. On conseille à ce regard de vérifier toutes années la stabilité du pH.

4.13 Caractéristiques chimiques de l'eau

Dans le tableau ci-dessous, on reporte les paramètres principaux, qui déterminent la qualité de l'eau. Il faut de respecter ces valeurs pour prévenir la corrosion ou l'accumulation de tous dépôts, qui compromettent la capacité thermique et la vie utile de l'échangeur côté utilisateur. A ce regard, on conseille de vérifier toutes années les caractéristiques chimiques/physiques de l'eau.

Table key	Important Note: The following paratmeters can also influence the corrosion
	resistence
+ Good resistance under normal conditions	Temperature: The data in the table are based water temperature of 20°C
	unless otherwise is stated.
Corrosion problems may occur especially	Presence of oxidants in the environment: guidelines regarding the oxygen
when more factors are valued 0	content are shown in Table 3.
	Product form, heat treatment and presence of intermetallic phases:
- Use is not recommended	The data in the table is based on untreated raw material.

		Plate I	Plate Material		Brazing Material		
WATER CONTENT	CONCENTRATION (mg/l or ppm)	TIME LIMITS Analyze before	AISI 304	AISI 316	COPPER	NICKEL	STAINLESS STEEL
	< 70	-	+	+	0	+	+
Alkalinity (HCO ₃ ⁻)	70-300	Within 24 h	+	+	+	+	+
	> 300		+	+	0/+	+	+
	< 70		+	+	+	+	+
Sulphate ^[1] (SO ₄ ²⁻)	70-300	No limit	+	+	0/-	+	+
	> 300		+	+	-	+	+
HCO ₃ - / SO ₄ ²⁻	> 1.0	NIa liasis	+	+	+	+	+
HCO ₃ / SO ₄	< 1.0	No limit	+	+	0/-	+	+
Electrical conductivity ^[2]	< 10 μS/cm		+	+	0	+	+
(Refer to Table 3 for oxygen content guidelines)	10-500 μS/cm	No limit	+	+	+	+	+
	> 500 µS/cm		+	+	0	+	+
	< 6.0						0
	6.0-7.5		+	+	0	+	+
pH ^[3]	7.5-9.0	Within 24 h	+	+	+	+	+
r··	9.0-10		+		$0/+^{[4]}$	+	+
	>10.0		+			+	+
	< 2	Within 24 h	+	+	+	+	+
Ammonium (NH ₄ ⁺)	2-20		+	+	0	+	+
	>20		+	+	-	+	+
	<100		+	+	+	+	+
Obligation (OD)	100-200		0	+	+	+	+
Chlorides (Cl ⁻)	200-300	No limit	-	+	+	+	+
(Refer to Table2 for temperature- dependent values)	300-700		-	0/+	0/+	+	-
	>700		-	-	0	+	-
	< 1		+	+	+	+	+
Free chlorine (Cl ₂)	1-5	Within 5 h	-	-	0	+	-
	> 5		AISI 304 AISI 316 COPPER NICKEL ST +	-			
	< 0.05	AL 12 %	+	+	+	+	+
Hydrogen sulfide (H ₂ S)	>0.05	No limit				+	+
	< 5		+	+	+	+	+
Free (aggressive) carbon dioxide (CO ₂)	5-20	No limit	+	+	0	+	+
	> 20		+	+	-	+	+
T-1-1 b (5)	4.0 - 11 °dH						
Total hardness ^[5] (Refer to "Scaling Document" for scaling aspect of hardness effect)	70 - 200 mg/l CaCO3	No limit	+	+	+	+	+
Nitrata[1] (NO 2)	< 100	NI- liit	+	+	+	+	+
Nitrate ^[1] (NO ₃ ⁻)	> 100	No limit	+	+	0	+	+
Iron ^[6] (Fe)	< 0.2 > 0.2	No limit					+
	< 0.2						+
Aluminium (AI)	> 0.2	No limit					+
[6]	< 0.1						+
Manganese ^[6] (Mn)	> 0.1	No limit					+

CHLORIDE CONTENT	MAXIMUM TEMPERATURE								
CHLORIDE CONTENT	20°C	30°C	60°C	80°C	120°C	130°C			
= 10 ppm	SS 304	SS 304	SS 304	SS 304	SS 304	SS 316			
= 25 ppm	SS 304	SS 304	SS 304	SS 304	SS 316	SS 316			
= 50 ppm	SS 304	SS 304	SS 304	SS 316	SS 316	Ti			
= 80 ppm	SS 316	SS 316	SS 316	SS 316	SS 316	Ti			
= 200 ppm	SS 316	SS 316	SS 316	SS 316	Ti	Ti			
= 300 ppm	SS 316	SS 316	SS 316	Ti	Ti	Ti			
=700 ppm	SS 316	SS 316	Ti	Ti	-	-			
=1000 ppm	SS 316	Ti	Ti	Ti	-	-			
> 1000 ppm	Ti	Ti	Ti	Ti	-				

Pour prévenir la corrosion ou l'accumulation de tous dépôts, on recommande de:

- · Vidanger l'évaporateur avant toutes opération de manutention;
- Ne pas effectuer des opérations de nettoyage avec des systèmes mécaniques pas appropriés, comme mèches de forage ou jets de pression trop élevés;
- Ne pas effectuer des nettoyages avec des détergents trop agressifs. Vérifier, avant utiliser tous détergents chimiques, la compatibilité avec les matériaux de construction de l'échangeur;
- Pendant les arrêts hivernaux, vidanger soigneusement l'échangeur

En cas de long arrêts, laisser l'échangeur avec de l'eau glycolée ou complètement vide.

4.13.1 Prévention du risque de gel de l'échangeur d'utilités

L'eau contenue dans l'échangeur d'utilité, si elle n'est pas correctement additivée, peut geler et entraîner une panne de l'échangeur d'utilité. Pendant le fonctionnement de l'appareil, cela peut se produire en raison d'un débit d'eau insuffisant ou d'une température de l'eau trop basse. Afin d'éviter de telles situations, l'unité est équipée en standard d'un dispositif qui détecte la présence d'un débit (pressostat différentiel ou débitmètre à palettes) et d'une sonde antigel placée sur le tuyau d'eau sortant de l'unité. Les deux dispositifs prévoient en standard d'usine un réarmement manuel en cas d'intervention.

Il est obligatoire de soumettre les dispositifs préventifs susmentionnés (pressostat différentiel d'eau/fluxostat et sonde antigel) à des contrôles périodiques afin de s'assurer de leur bon fonctionnement.

L'intervention et/ou la modification du fonctionnement décrit ci-dessus des dispositifs de prévention susmentionnés (pressostat différentiel de l'eau/interrupteur de flux et sonde antigel) décharge l'entreprise de toute responsabilité en cas de dommages à l'appareil causés par le gel de l'échangeur de l'utilisateur.

4.14 Contenu d'eau minimum circuit utilisateur

Toutes machines frigorifiques nécessitent d'un contenu minimum d'eau à l'intérieur du circuit hydraulique côté utilisateur, dans le but de garantir un bon fonctionnement de l'unité. Une correcte quantité d'eau réduit les anti-courts cycles, en prolongeant ainsi la durée de vie de l'unité.

RAS MC KP /VB KP / F Kp	521	591	721		871	1001	1402
Contenu d'eau minimum (I)	900	900	900)	1200	1200	1500
RAS MC KP /VB KP / F Kp	1702	2102	240	2	2902	3402	3702 VB Kp
Contenu d'eau minimum (I)	1500	1500	280	0	2800	2800	2800
PAS Kp	451	521	651	73	81 881	1001	1201
Contenu d'eau minimum (I)	900	900	900	90	900	1200	1200
PAS Kp	1502	1702	2102	25	02 285	2 2902	3402
Contenu d'eau minimum (I)	1200	1500	1500	15	00 280	0 2800	2800
GPS Kp	941	581	751		891	1051	1252
Contenu d'eau minimum (I)	900	1000	120	0	1500	1700	1100
GPS Kp	1452	1752	205	2	2552	2852	
Contenu d'eau minimum (I)	1200	1500	170	0	2100	2400	

4.15 Remplissage circuit hydraulique

- Avant le remplissage, vérifiez que toutes les vannes de vidange et drainage soient fermées.
- Ouvrez toutes les vannes de l'installation, les vannes de connexion et les vannes de purges.
- Ouvrez toutes les vannes de service.
- Commencez à remplir l'installation en ouvrant lentement les vannes du groupe de remplissage situé à l'extérieur de l'unité.
- Quand l'eau commence à sortir des vannes de purge sur les unités terminales, fermez les et continuez le remplissage jusqu'à ce que le manomètre indique une pression de 1.5 bar.

L'installation doit être remplie à une pression entre 1 et 2 bar. On recommande que cette opération soit répétée après que l'unité a opéré depuis un certain nombre d'heures (en raison de la présence de bulles d'air dans le système). La pression de l'installation devrait être vérifiée régulièrement et si elle tombe en dessous de 1 bar, le contenu d'eau devrait être complété. Vérifiez dans ce cas les joints des jonctions hydrauliques.

4.16 Vidange du circuit hydraulique

- Avant la vidange, positionnez l'interrupteur génerale en position "Off"
- Assurez-vous que la vanne du groupe de remplissage est fermée.
- Ouvrez la vanne de vidange à l'extérieur de l'unité et toutes les vannes de purge de l'unité et des unités terminales.

Si le fluide dans le circuit hydraulique contient un additif antigel, il est interdit de le descharger librement car il est polluant. Il doit être récupéré pour une possible réutilisation.

4.17 Batteries de condensation à micro-canaux

Les batteries de condensation sont réalisées par une série de tuyaux plats à section rectangulaire, dans lesquels on obtient les microcanaux; pour favoriser l'échange thermique, les tuyaux entrent en contact avec une feuille d'aluminium, dont la surface est spécialement conçue à ce propos. Sur les côtés de chaque batterie il y a deux collecteurs, recevant le réfrigérant à l'état gazeux du refoulement du compresseur et à l'état liquide après la condensation. Tous les composants de l'échangeur de chaleur air / réfrigérant sont réalisés en alliage d'aluminium, spécialement conçu pour favoriser la résistance aux agents corrosifs et l'exchange thermique avec l'air. Les différentes parties qui composent les échangeurs de chaleur sont raccordées par des joints brasés en atmosphère inerte, pour garantir la stabilité chimique maximale et minimiser par conséquence l'effet galvanique. L'aluminium est considéré un métal « actif », parce que à la présence d'oxygène, il s'oxyde très rapidement, en créant sur la surface une « pellicule » très résistante, tenace et qui peut se régénérer, protégeant le matériel de la détérioration. En conditions normales, donc dans une atmosphère avec PH compris entre 5 et 8 sans pics d'acidité ou de basicité, si on n'élimine pas la couche d'oxyde, l'aluminium ne s'endommage pas à cause de phénomènes corrosifs. La microstructure du matériel utilisé pour fabriquer l'échangeur de chaleur, mais surtout les conditions environnementales dans lesquelles il travaille, sont par conséquence des facteurs très importants pour la résistance à la corrosion de l'échangeur. Le degré élevé de passivation de l'alliage utilisée réduit le risque de corrosion de type galvanique. Si l'installation est sur des milieux particulièrement agressifs, des traitement de surface qui assurent une protection plus efficace et prolongée sont disponibles (options PCP et ECP).

4.17.1 Conditions environnementales corrosives

Les zones qui potentiellement peuvent influencer négativement la résistance à la corrosion des batteries en aluminium comprennent les zones côtières, les zones avec une densité de population élevées et les sites industriels. Il y a d'autres application spécifiques qui, bien qu'elles ne soient pas comprises dans les zones précédemment indiquées, peuvent être également dangereuses, comme par exemple les installations portuaires et aéroportuaires, les zones à haut trafic, les installations de traitement des eaux qui refluent, les centrales électriques, les zones près des industries chimiques, des brasseries, des industries alimentaires ou des industries d'incinération.

En ces cas, la quantité élevée d'agents de contamination présents dans l'air favorise la formation d'électrolytes, des substances qui conduisent électricité, si dissoutes dans l'eau, et qui favorisent donc la formation de phénomène corrosifs. On conseille pourtant de protéger la surface des échangeurs en aluminium par des traitements appropriés qui en prolongent la durée dans le temps sans compromettre l'efficience de l'échange thermique.

Près des zones côtières, par exemple, l'humidité est particulièrement riche de chlorure de sodium et soufre, substances qui à contact avec les matériaux métalliques peuvent facilement amorcer des phénomènes corrosifs. L'atmosphère saline en outre, qui déjà favorise la corrosion, a la fonction de catalyseur de corrosion à la présence d'émissions industrielles. C'est la raison pour laquelle l'environnement marin / industriel représente la pire situation du point de vue de la corrosion.

Les zones industrielles, celles à haute densité de population et le zones portuaires et aéroportuaires, par contre, sont caractérisées par une concentration élevée dans l'air d'oxyde de soufre (SO2 – SO3) et d'azote (NOx) dérivants de la combustion du charbon et des hydrocarbures fossiles. Ces substances dispersées dans l'air retombent au sol sous la forme de pluies acides ou rosées à PH bas.

Près de zones industrielles en outre, dans l'air il y a aussi des particules d'oxydes métalliques, chlorures, sulfates, acide sulfurique, carbone et ses composés. A la présence d'oxygène, eau et vapeur d'eau, ces particules deviennent très corrosives et donc capables d'attaquer plusieurs métaux, parmi lesquels l'aluminium, le fer, l'acier, le laiton, le cuivre et le nickel.

4.17.2 Batteries de condensation à micro-canaux en aluminium avec traitement par électrodéposition (option ECP)

Elles sont réalisées en alliage d'aluminium et fabriquées avec des joints de raccordement. Après des opérations de nettoyage, de séchage et d'électrodéposition d'un produit spécifique, les batteries sont sujettes à un traitement de peinture époxy. Le produit appliqué forme une pellicule homogène et continues sur l'entière surface de l'échangeur, en créant un revêtement lis, flexible et particulièrement résistant aux agents corrosifs.

L'épaisseur du matériel appliqué sur la surface de la batterie est d'environ 25 µm et comporte une perte d'environ 2% au niveau de la transmission de la chaleur.

Bien qu'ils soient protégés contre les agents corrosifs, les échangeurs avec traitement de protection sur leur surface doivent également être inspectés périodiquement (avec fréquence non supérieure à 12 mois en conditions de fonctionnement non agressives) pour vérifier l'état de la couche de protection. Au cas où la couche de protection résulterait rayée ou endommagée complètement ou partiellement, il est indispensable de protéger de nouveau la partie à vue par un nouveau traitement.

Au cas où l'unité serait installée en zones sujettes à des vents forts, près des côtes ou déserts ou de toute façon dans des zones sujettes à des tempêtes de vent ou sable, on conseille d'inspecter les batteries avec une fréquence supérieure (tous les 3 mois) pour vérifier l'état de la couche de protection.

4.18 Raccordements électriques: informations préliminaires de sécurité

Le tableau de connexion électrique est placé à l'intérieur de l'unité au sommet du compartiment technique où les différents composants du circuit réfrigérant sont aussi situés. Pour accéder au tableau il faut retirer le panneau frontal de l'unité:

Les connexions électriques doivent être effectuées en conformité au schéma électrique joint à l'unité et des normes de montage locales et internationales en vigueur.

S'assurer que la ligne d'alimentation électrique de l'unité soit séctionné à mont de la même. S'assurer que le sectionneur soit sous clef ou que sur la poignée d'actionnement soit appliqué le panneau correspondant d'avertissement à ne pas opérer.

Il est impératif de vérifier que les tensions d'alimentation correspondent à celles indiquées sur l'étiquette placée sur le panneau frontal de la machine.

Les câbles d'alimentation doivent être protégés à mont contre les effets de court-circuit et de surcharge par un dispositif conforme aux normes en vigueur.

La section des câbles doit être conforme au sistème de protectionet doit tenir compte de tous les facteurs qui peuvent interferer (température, type d'isolation, longueur, etc.).

L'alimentation électrique doit être dans les limites de tension définies: dans le cas d'une non observation de ces conditions, la garantie est nulle.

Le senseur de débit doit être installé et raccordé électriquement en tenant compte des instructions dans le schéma électrique. Ne jamais ponter ou modifier la connexion de ces senseurs sous peine d'invalider immédiatement la garantie sur la machine.

Effectuer toutes les liaison à la terre prevues par les normes en vigueur.

Avant de démarrer toute opération s'assurer que l'alimentationélectrique soit déconnecté.

La ligne d'alimentation et les dispositifs de sécurité hors machine doivent être dimensionnés pour être en mesure de garantir une correcte tension d'alimentation aux conditions maximales de fonctionnement indiquées dans le manuel technique.

PROTECTION CONTRE LE GEL:

Si le contacteur principal est déclenché toutes les composantes de chauffage électrique et de mise hors gel sont inactives dans l'unité ouverte. Le contacteur central ne devra être déclenché que lors du nettoyage, de l'entretien ou la réparation de d'unité.

On doit alimenter l'unité par un câble à 5 fils (3 phases + N + terre) si l'alimentation est 400V (±10%) / 3Ph / 50(±2%) Hz + terre. Toutefois, des alimentations spéciales sont disponibles sur demande (vérifier la plaque d'identification et le schéma électrique).

Raccorder les phases aux bornes en entrée au sectionneur général et le conducteur de terre à la borne prédisposée. Utiliser un câble de section appropriée et de longueur la plus possible contenue pour éviter des chutes de tension.

Protéger le câble d'alimentation en amont de l'unité par un interrupteur automatique de taille et caractéristiques appropriées. On peut relever la section du câble d'alimentation et la taille de l'interrupteur automatique du tableau composants annexé au manuel, sur lequel on a indiqué aussi la taille du sectionneur général.

La position de l'entrée du câble d'alimentation est indiquée sur le schéma dimensionnel de l'unité annexé au manuel. Il faut de protéger le point d'entrée du câble dans l'unité en conformité aux règlements locaux en vigueur.

Au cas où le câble d'alimentation arriverait au point d'entrée par le dessus, il sera nécessaire de prévoir un pli brise-gouttelette.

Avant d'intervenir sur le système électrique du groupe, il faut contrôler que les circuits électriques de l'unité ne se sont pas endommagés pendant le transport. En particulier, il faut vérifier que toutes les vis des bornes soient bien fixées et que l'isolement des câbles soit intact en en bon état.

Les conducteurs des phases du câble d'alimentation doivent être connectés aux bornes libres à l'entrée de l'interrupteur général de l'appareil ; le conducteur de terre doit être connecté à la borne réservée à cet usage (identifiée par les lettres PE).

4.19 Données électriques

Les données électriques indiquées de suite sont à considérer pour unité standard sans accéssoires. Dans tous les autres cas se rapporter aux données électriques indiquées dans le schéma électrique joint.

La tension d'alimentation ne doit pas subir des variations supérieures à \pm 10% de la valeur nominale et le déséquilibrage entre les phases doit être inférieur à 2%. Si ces tolérances ne peuvent pas être respectées on vous prie de contacter notre bureau technique. L'utilisation de la machine avec des variations supérieures à celles indiquées audessus entraînera la perte de la garantie.

RAS MC Kp / VB Kp		521	591	721	871	1001	1402
Alimentation	V/~/ Hz	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND
Unité de contrôle	V	24	24	24	24	24	24
Circuit auxiliaire	V/~ - V	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24
Aliment. des ventilateurs	V/~	230/1	230/1	230/1	400/3	400/3	400/3
Section des câbles	mm^2	16	16	16	25	35	35
Section PE	mm ²	16	16	16	16	25	25

RAS MC Kp / VB Kp		1702	2102	2402	2902	3402	3702 RAS VB Kp
Alimentation	V/~/Hz	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND
Unité de contrôle	V	24	24	24	24	24	24
Circuit auxiliaire	V/~ - V	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24
Aliment. des ventilateurs	V/~	400/3	400/3	400/3	400/3	400/3	400/3
Section des câbles	mm^2	70	95	120	120	150	2x185
Section PE	mm ²	50	50	70	70	95	185

RAS F Kp		521	591	721	871	1001	1402
Alimentation	V/~/Hz	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND
Unité de contrôle	V	24	24	24	24	24	24
Circuit auxiliaire	V/~ - V	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24
Aliment. des ventilateurs	V/~	400/3	400/3	400/3	400/3	400/3	400/3
Section des câbles	mm^2	16	16	16	25	35	35
Section PE	mm²	16	16	16	16	25	25

RAS F Kp		1702	2102	2402	2902	3402
Alimentation	V/~/Hz	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GN	D 400/3/50+N+GND	400/3/50+N+GND
Unité de contrôle	V	24	24	24	24	24
Circuit auxiliaire	V/~ - V	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24
Aliment. des ventilateurs	V/~	400/3	400/3	400/3	400/3	400/3
Section des câbles	mm^2	70	95	120	120	150
Section PE	mm^2	50	50	70	70	95
DAS Kn		<i>1</i> 51	521	651	721 00	1 1001

PAS Kp		451	521	651	731	881	1001	1201
Alimentation	V/~/Hz	400/3/50+N+GND						
Unité de contrôle	V	24	24	24	24	24	24	24 VAC
Circuit auxiliaire	V/~ - V	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24
Aliment. des ventilateurs	V/~	400/3	400/3	230/1	230/1	230/1	400/3	400/3
Section des câbles	mm^2	16	16	16	16	16	25	35
Section PE	mm^2	16	16	16	16	16	16	25

PAS Kp		1502	1702	2102	2502	2852	2902	3402
Alimentation	V/~/Hz	400/3/50+N+GND						
Unité de contrôle	V	24	24	24	24	24	24	24
Circuit auxiliaire	V/~ - V	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24
Aliment. des ventilateurs	V/~	400/3	400/3	400/3	400/3	400/3	400/3	400/3
Section des câbles	mm^2	35	35	70	95	110	120	150
Section PE	mm²	25	25	35	50	60	70	95

GPS Kp		491	581	751	891	1051	1252
Alimentation	V/~/Hz	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND
Unité de contrôle	V	24	24	24	24	24	24
Circuit auxiliaire	V/~ - V	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24
Aliment. des ventilateurs	V/~	400/3	400/3	400/3	400/3	400/3	400/3
Section des câbles	mm^2	16	16	16	16	25	35
Section PE	mm^2	16	16	16	16	16	25

GPS Kp		1452	1752	2052	2552	2852
Alimentation	V/~/Hz	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND	400/3/50+N+GND
Unité de contrôle	V	24	24	24	24	24
Circuit auxiliaire	V/~ - V	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24	230/1 - 24
Aliment. des ventilateurs	V/~	400/3	400/3	400/3	400/3	400/3
Section des câbles	mm^2	35	35	70	95	120
Section PE	mm^2	25	25	35	50	70

Les données électriques peuvent changer pour des améliorations sans autres notices II est donc impératif de prendre en compte les schema de câblage livrés avec la machine.

5. MISE EN SERVICE

5.1 Contrôles préliminaires

Avant de procéder à la mise en service de l'unité il est nécéssaire éffectuer les contrôles préliminaires de la partie électrique, hydraulique et frigorifique.

Les opérations dee mise en service doivent être éxécutées en conformité aux instructions des paragraphes précedants.

Jamais éteindre l'unité (pour arrêt temporaine), en actionnant l'intérrupteur principal: ce dispositif est à utiliser seulement pour déconnecter l'unité de l'alimentation en absence de passage de courant, par example quand l'unité est à l'arrêt. De plus, en absence d'alimentation, les résistences carter ne sont pas alimentées, avec conseguent danger de dommage aux compresseurs au démarrage de l'unité.

5.1.1 Avant la mise en marche

Malfonctionnements ou dégats peuvent aussi être conséquence de manque de soin durant le transport et l'installation. Avant l'installation ou la mise en marche vérifier l'absence de pertes de réfrigérant causées par l'endommagement de capilllaires, connéxions des préssostats, tuyaux du circuit frigorifique du à manomission, vibrations durant le transport, mauvaise manipulation sur chantier.

- Vérifier que l'unité soit installé à règle d'art et en conformité aux indications de ce manuel.
- Vérifier les connéxions électriques et le correcct serrage de toutes les bornes.
- Vérifier que la tension des phases R S T soit celle indiquée sur la plaquette identificative de l'unité.
- Vérifier que l'unité soit réliée à la terre.
- Vérifier l'absence de fuites de fréon, éventuellement à l'aide d'un déteccteur de fuite.
- Vérifier l'absence de taches d'huile qui peuvent indiquer une fuite.
- Vérifier que le circuit frigorifique soit en pression: utiliser lles manomètres sur l'unité, si presents, ou des manomètres de service.
- Vérifier que toute les prises de service soient fermées avec les bouchons prévus à cet effet.
- Vérifier que les résitances électriques (si présentes) soient alimentées corréctement.
- Vérifier que les liaisons hydrauliques soient installés corréctement et que toutes les indications sur les plaquettes soient respectées.
- Vérifier que l'installation soient purgée corréctement.
- Vérifier que les températures des fluides soient dans les limites opéraationnels et de fonctinnement.
- Avant deprocéder à la mise en marche vérifier que tous les panneaux de fermeture soient positionnés et fixès correctement.

Ne pas modifier les liaison électriques del'unité sous peine d'annullation de la garantie.

Si presents, les résistances électriques des compresseurs doivent être activées au moins 12 heures avant le demarrage (période de prechauffe) fermant l'interrupteur principal (les resistances sont alimentées automatiquement quand l'intérrupteur est fermé). Les resistances travaillent correctement si après quelque minute la température du carter compresseur est 10/15°C supérieure à la tempèrature ambiante.

En présence de resistances électriques pour les compresseurs, durant les 12 heures de la période de prechauffe il est important de vérifier si sur l'écran de l'unité est présent le message OFF ou que l'unité est en stanby. En cas de demarrage accidental avant l'écoulement de la période de prechauffe de 12 heures, les compresseurs pourraient s'endommager serieusement et la garanti sera nulle.

5.1.2 Premier démarrage

Le premier démarrage de l'unité doit être effectué par un technicien frigoriste spécialisé et autorisé par le Fabriquant.

Avant de démarrer l'unité, vérifier que tous les robinets sur l'aspiration et le refoulement des compresseurs soient ouverts.

On doit effectuer le mise en fonction de l'unité juste après l'ouverture des robinets sur les compresseurs.

Avant de démarrer l'unité pour la première fois ou après une longue période d'arrêt, on doit vérifier que les paramètres affichés sur le microprocesseur soient cohérents avec les conditions de fonctionnement prévues.

Pour mettre en fonction l'unité, il faut tourner le sectionneur général en position ON, pour fournir l'alimentation électrique au groupe. Ensuite, il faut appuyer sur le bouton ON/OFF du clavier du microprocesseur, en le positionnant sur ON.

Si le contact ON/OFF à distance est fermé, l'éventuelle pompe de circulation contrôlée par le microprocesseur démarrera immédiatement. Après un certain delai, dont la valeur est affichée sur le microprocesseur, les ventilateurs commencent à fonctrionner et, ensuite, les différents compresseurs, sur la base de la puissance frigorifique nécessaire pour satisfaire la charge thermique présente.

Une fois que l'unité atteint un régime de fonctionnement stable, le technicien qui est en train de faire la mise en service devra relever les paramètres opératifs du group et vérifier que:

- a) Les pressostats de sécurité de haute pression fonctionnent, soient installés et réglés correctement;
- b) Sur les soupapes de sécurité externes soit indiqué la pression de calibrage et que la valeur soit celle prévue;
- c) Il n'y a aucune fuite de réfrigérant.

On doit enregistrer les données relevées sur le Rapport de Mise en Service, en pièce jointe au manuel.

Une copie du Rapport de Mise en Service, remplie en toute part, doit être envoyée au Fabriquant, pour rendre opérative la garantie de l'unité.

Pendant les opérations de mise en service, le technicien doit vérifier que les dispositifs de sécurité (pressostats de haute et basse pression, pressostat différentiel eau, thermostat antigel, etc.) et de contrôle (thermostat de régulation, dispositif de réglage de la pression de condensation, etc.) fonctionnent correctement.

5.1.3 Points de consigne d'usine

Dispositif		Set-point	Différentiel	Type Reset
Mode froid	°C	23	2	
Mode eau chaude sanitaire	°C	50 * **	2	
Thermostat antigel	°C	4,5	2	Manuel
Soupape sécurité haute pression	Bar	23		
Pressostat haute pression	Bar	22		Manuel
Pressostat basse pression	Bar	2,3***	0,7	Automatique

^{*} Valeurs d'usine. Sur demande, valeurs différents disponibles.

^{***} Eau en sortie +7 °C

Dans le cas où le mode de fonctionnement soit chaud/froid seul (sans production d'ECS) le paramètre FS1 doit être modifié de 2 à 1 pour prévenir les alarmes de configuration. En cas de nécessité contactez le fabriquant.

5.1.4 Contrôles durant le fonctionnement

- Contrôler la rotation des compresseurs et des ventilateurs. Si la rotation n'est pas correcte, déconnecter immédiatement l'interrupteur général et inverser les phases d'alimentation principale de façon à invertir le sens de rotation des moteurs.
- Après quelques heures de fonctionnement, vérifier que l'indicateur de liquide ait la partie centrale de couleur verte: si elle devait être jaune, on pourrait avoir de l'humidité dans le circuit. Dans ce cas il est impératif d'effectuer une déshydratation du circuit (à exécuter exclusivement par du personnel qualifié). Contrôler qu'il n'y ait pas de bulles d'air dans l'indicateur de liquide. En présence de bulles il est nécessaire intégrer la charge de fréon. La présence de quelque bulle de vapeur est tout de même admissible.

^{**} Avec accessoire RP

5.2 Fonctionnement du capteur de détection de gaz réfrigérant

5.2.1 Démarrage de l'unité

Chaque fois que l'unité est mise en marche (Power-On), une procédure d'auto-étalonnage est effectuée sur l'élément de détection qui dure 300 secondes au cours desquelles:

- Une alarme de fuite de réfrigérant (leakage) est signalée au moyen d'une alarme lumineuse rouge située sur la face avant du tableau électrique et le contact U20-U21 sur le bornier s'enclenche
- Le circuit auxiliaire 24 Vca et le circuit 230 Vc ne sont pas alimentés
- · La ventilation forcée du compartiment compresseur est activée par le biais du ventilateur d'urgence ATEX

Si la procédure est réussie, le capteur devient immédiatement opérationnel:

- L'alarme lumineuse rouge située à l'avant du tableau électrique s'éteint et le contact U20-U21 s'enclenche
- Tous les circuits auxiliaires sont alimentés
- La ventilation forcée du compartiment compresseur s'arrête par le biais du ventilateur d'urgence ATEX L'unité est en mode ON et est prête à démarrer.

5.2.2 Fonctionnement

Le fonctionnement du capteur est basé sur deux seuils d'alarme:

- Le seuil inférieur est fixé à 20% de la LII (limite inférieure d'inflammabilité) avec réinitialisation automatique de l'alarme
- Seuil supérieur fixé à 30% LII (limite inférieure d'inflammabilité) avec réinitialisation manuelle de l'alarme

Si, pendant le fonctionnement normal de l'unité, le capteur détecte une concentration de réfrigérant supérieure aux valeurs seuils, l'unité se met immédiatement en alarme (passage à l'état d'arrêt OFF):

- Une alarme de fuite de réfrigérant (leakage) est signalée au moyen d'une alarme lumineuse rouge située sur la face avant du tableau électrique et le contact U20-U21 sur le bornier s'enclenche
- Le circuit auxiliaire 24 Vca et le circuit 230 Vca sont hors tension
- · La ventilation forcée du compartiment compresseur est activée par le biais du ventilateur d'urgence ATEX

Cette situation persiste jusqu'à ce que le capteur subisse une réinitialisation, qui peut se produire automatiquement ou doit être effectuée manuellement en fonction de la valeur de seuil dépassée.

Un pressostat différentiel placé dans le flux d'air vérifie que le ventilateur d'urgence ATEX fonctionne effectivement. Pendant le fonctionnement normal de l'unité, le ventilateur d'urgence ATEX est mis en marche de force par cycles de 2 minutes toutes les 20 heures.

Remarque: La signalisation de la lampe rouge située sur la porte du tableau électrique peut indiquer:

- · Alarme de fuite de réfrigérant
- · Alarme de défaillance du débit du pressostat différentiel d'air, qui peut être réinitialisée en coupant l'alimentation de l'appareil
- · Alarme thermique du ventilateur d'urgence ATEX, qui peut être réinitialisée en réarmant le thermique lui-même

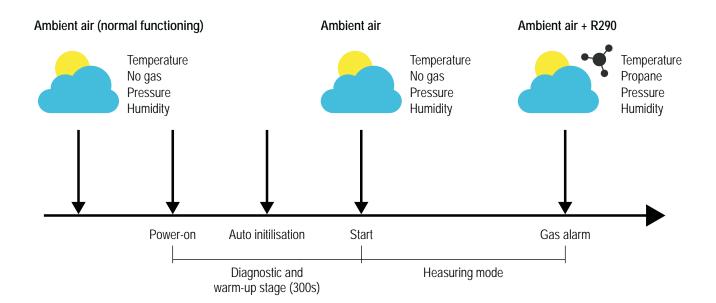
Si le ventilateur d'urgence ATEX se met en alarme, il s'arrête, la ventilation forcée périodique n'est plus effectuée, elle est signalée par la lampe et la machine s'éteint.

5.2.3 Réinitialisation de l'alarme du capteur et réinitialisation du fonctionnement de l'unité Reset automatique

Il ne se produit que si la concentration de réfrigérant dans l'air détectée par le capteur passe en dessous du seuil inférieur, sans avoir dépassé le seuil supérieur.

Dans ce cas, l'alarme du capteur disparaît automatiquement:

- · L'alarme lumineuse rouge située à l'avant du tableau électrique s'éteint et le contact U20-U21 s'enclenche
- Tous les circuits auxiliaires sont réactivés
- La ventilation forcée du compartiment compresseur s'arrête par le biais du ventilateur d'urgence ATEX L'unité revient en mode ON et est prête à démarrer.


Reset manuel

Avant de réinitialiser l'alarme et de rétablir le fonctionnement normal de l'unité, il est indispensable d'identifier et d'éliminer les causes qui l'ont générée. Ce n'est qu'ensuite qu'il sera possible de réinitialiser l'alarme en intervenant sur l'interrupteur de déconnexion générale (alimentation OFF/ON). Le capteur effectuera alors la procédure d'auto-étalonnage après laquelle (en cas de succès) l'unité pourra revenir à l'état de fonctionnement ON.

Il est très important que la réinitialisation du capteur soit effectuée après avoir dispersé toute trace de réfrigérant dans le compartiment compresseur et que le capteur commence la procédure d'auto-étalonnage dans les conditions environnementales dans lesquelles il fonctionnera normalement.

Par le biais du contact « U20-U21 » présent dans le bornier du tableau électrique, il est possible d'utiliser le signal d'alarme du capteur de détection des fuites, par exemple pour couper l'alimentation électrique d'un ou de plusieurs dispositifs situés à proximité de l'unité. Ce contact est généralement ouvert et sans tension. Si le capteur n'est pas en alarme, le contact est fermé ; il s'ouvre si l'unité n'est pas alimentée ou si le capteur est en alarme.

Le capteur utilise une technologie qui ne nécessite pas d'étalonnages périodiques obligatoires. Des contrôles visuels et fonctionnels doivent être effectués périodiquement pour s'assurer que le système est pleinement opérationnel. Ces contrôles doivent être effectués par du personnel qualifié pour travailler sur des circuits contenant des gaz réfrigérants inflammables, de la manière et aux intervalles décrits dans la section dédiée de ce manuel («Contrôles périodiques du capteur de détection de gaz réfrigérant»).

En fonctionnement normal, la ventilation du compartiment technique est forcée cycliquement pendant 2 minutes toutes les 20 heures.

Si les contrôles périodiques de maintenance du capteur de détection de fuites ne sont pas effectués dans les délais requis, l'unité se bloque. Pour plus de détails, veuillez vous référer au paragraphe dédié (« Contrôles périodiques du capteur de détection de gaz réfrigérant »).

En cas d'altération du capteur de détection de fuites, de non exécution des contrôles prescrits, d'utilisation de composants non d'origine et de réalisation de connexions non conformes à la documentation de conception suite à des travaux de maintenance, l'Entreprise est automatiquement dégagée de toute responsabilité en cas de dysfonctionnement.

5.3 Soupapes de sécurité

Les raccordements de sortie des soupapes de sécurité externes installés sur l'unité sont prédisposés avec une connexion filetée, pour être raccordées à une tuyauterie d'échappement en zone suure, à une hateur pas inférieure à 3 mètres du condenseur ou à une distance de 3 mètres minimum de la machine ou d'autres sources d'ignition. Les soupapes doivent être canalisées par des tuyauteries en métal jusqu'à un endroit où le réfrigérant déchargé ne puisse provoguer aucun dommage à personnes ou biens.

Le réfrigérant qui sort des soupapes de sécurité est un gaz à haute pression et haute température qui sort à grande vitesse. L'écoulement peut causer des dommages aux biens et aux personnes qu'il touche directement.

L'ouverture des soupapes de sécurité s'accompagne de l'émission d'un bruit dont l'intensité peut endommager l'audition des personnes situées à proximité immédiate.

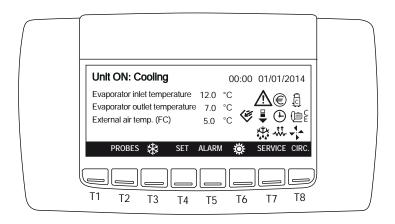
Les tuyauteries doivent avoir un diamètre non inférieur à celui de la connexion d'échappement des soupapes de sécurité; les pertes de charges du réfrigérant sur le circuit doivent être les plus basses possible et, de toute façon, ne doivent pas provoquer de réductions du débit des soupapes, conforme à EN13136. La sortie des tuyauteries doit être réalisée pour éviter que la pluie, la neige, glace ou saleté puissent s'accumuler et boucher les tuyauteries. Par exemple, prévoir un siphone à la sortie du pipe-line d'évacuation.

L'échappement des soupapes doit se faire à une distance appropriée des autres équipements ou sources d'allumage; le réfrigérant échappé ne doit pas rentrer par hasard dans les batiments ou les milieux fermés. En tout cas, les tuyauteries éventuelles sur l'échappement des soupapes de sécurité doivent être réalisées en conformité aux lois et aux règlements en vigueur.

Le risque de choc électrique causé par foudres lié au conduit en métal, qui se doit brancher à la sortie de la soupape de sécurité, se peut évaluer selon les normes IEC 62305, CEI EN 62305 et autres normes en vigueur, le cas échéant. Cette analyse devra prendre en compte, parmi les autres facteurs, de la probabilité moyenne de la chute de foudres, de la conformation du territoire et de tous autres éléments, qui sont présents dans le lieu d'installation, comme tours, gratte-ciels, clochers, etc. Ces éléments sont bien plus importants par rapport à ceux de l'installation même pour la définition du risque de la chute de foudres et des conséquents actions pour limiter ses effets.

Sans connaître les aspects qui définissent le territoire, il est impossible de faire une analyse de ce type, qui se peut considérer efficace et correcte.

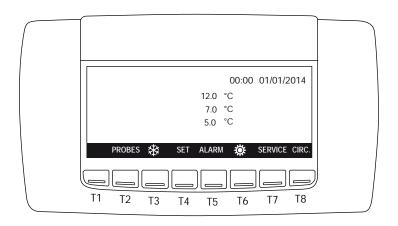
Au même temps, l'installation d'un dispositif de captation n'est pas généralement indispensable et, dans le cas contraire, il doit être nécessairement dimensionné par le concepteur du projet.


Le risque de chute de foudres, incendie, séisme, accumulation de neige, tourbillons et, en général, de phénomènes naturels ne peut pas être évalués dans aucun cas par le constructeur de la machine frigorifique et est pourtant à la charge du concepteur du projet.

5.4 Positionnement du contrôle

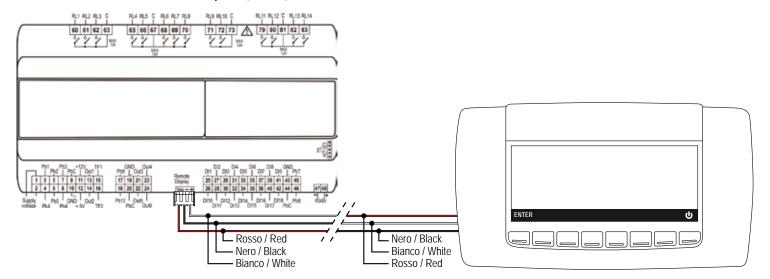
5.5 Description du contrôle

5.5.1 Icônes de l'afficheur

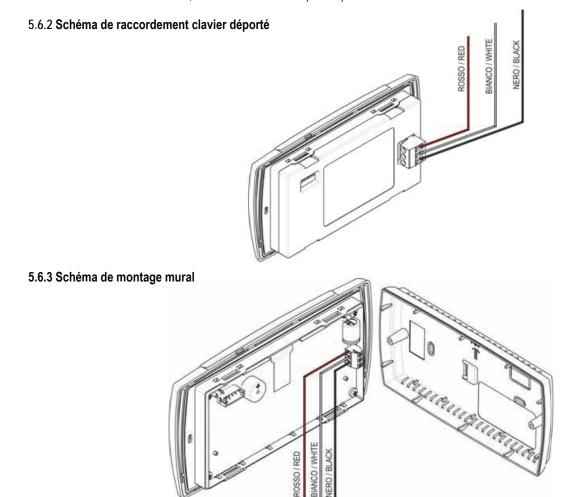

Icône	Signification	Icône	Signification
	Au moins un compresseur en fonction.	- ** *	Résistances antigel en fonction.
⊕ E C	Pompe en fonction.	(Mise à l'arrêt automatique ou mode économie d'énergie actifs.
*	Ventilateurs en fonction.	4	Free cooling en fonction (non disponible).
\triangle	Clignote pour indiquer qu'une alarme est active.	a	Eau chaude sanitaire (non disponible).
€	Fonctionnement en mode économie d'énergie.	***	Dégivrage en cours.
=	Délestage compresseur en cours (non disponible).		

5.5.2 Fonction des touches

T2: PROBES	Visualisation lecture sondes.
T3: **	Mise en marche unité en mode froid.
T4: SET	Accès au mode visualisation et modification des points de consigne.
T5: ALARM	Visualisation et reset alarmes.
T6: 🔅	Mise en marche unité en mode chaud (non disponible).
T7: SERVICE	Accès au menu SERVICE.
T8: CIRC	Accès aux informations de circuit (état compresseurs, état pompes eau, état sondes).


Quand l'unité est en marche, l'affichage sera le suivant:

5.6 Liaison clavier déporté


5.6.1 Connexion de le clavier déporté (VGI890)

L'opérateur doit rester très vigilant lors de la liaison entre l'afficheur et le contrôle lepour éviter des dommages irréparables au contrôle et/ou à l'afficheur

- En absence d'alimentation, le clavier ne fonctionne pas.
- En absence de communication, le clavier affiche "noL" (no lien).

6. UTILISATION

6.1 Mise en marche et démarrage initial

Mise en marche et à l'arrêt de l'unité peuvent être effectués par:

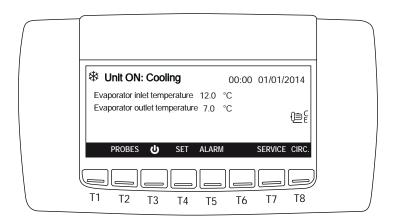
- clavier
- · ON/OFF déporté

6.1.1 Mise en marche de l'unité par clavier

6.1.2 Mode froid

Pour allumer l'unité en mode froid, appuyer la touche 🐰 . L'icône 💥 apparait sur l'afficheur.

Si nécessaire, commence la temporisation du compresseur et l'icône correspondante clignote. La pompe à eau sera activée après quelque seconde, successivement, une fois la temporisation terminée, le compresseur démarre et l'icone reste allumé. L'écran visualise la température de retour eau utilisateur et la température de retour eau chaude sanitaire.


Avec unité en veille on peut:

- · Afficher les valeurs relevées
- · Gérer les alarmes, visualisation et report.

N'éteindre jamais l'unité par l'interrupteur principal: il est à utiliser exclusivement pour mettre hors tension l'unité une fois à l'arrêt. La disjonction empêche entre autre l'alimentation des résistances carter, avec risque de casser les compresseurs au démarrage.

Le clavier ci-dessous illustre l'affichage typique lors du fonctionnement:

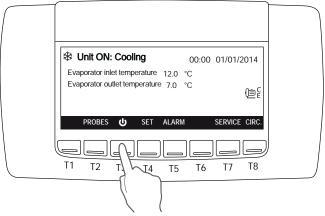
6.1.3 Mode froid


Pour allumer l'unité en mode froid, appuyer sur la touche . L'icône apparait sur l'afficheur.

Si demandé, commence la temporisation du compresseur et l'icône correspondante clignote. La pompe à eau sera activée après quelque seconde, successivement, une fois la temporisation terminée, le compresseur démarre et l'icône reste allumé. L'écran visualise la température de retour eau utilisateur et la température de retour eau chaude sanitaire.

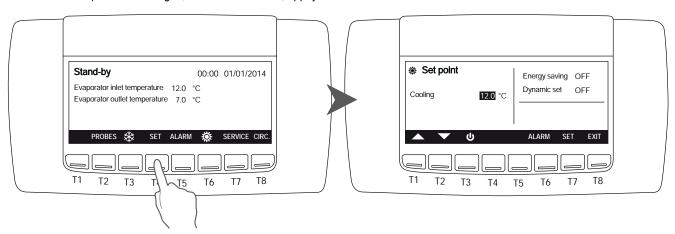
6.1.4 Mise en marche de l'unité par entrée numérique

Si l'unité est mise à l'arrêt par entrée numérique, l'affichage sera le suivant:



Quand l'entrée numérique est inactive, l'unité est à l'arrêt.

- L'entrée numérique est prioritaire sur le clavier
- L'unité peut être mise en marche et à l'arrêt seulement si l'entrée numérique est activée


6.2 Mise à l'arrêt

Pour éteindre l'unité appuyer la touche T3.

6.3 Comment changer les points de consignes

Pour modifier les points de consigne, de l'écran d'accueil, appuyer SET.

Pour modifier les valeurs, positionner le curseur sur la valeur désirée avec T1; appuyer SET pour sélectionner, la valeur commence à clignoter, modifier avec T1 et T2. Une fois atteinte la valeur désirée appuyer SET pour confirmer.

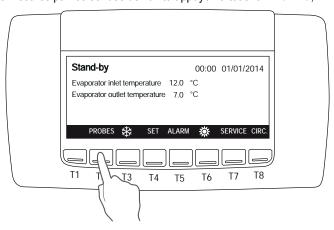
Le curseur se positionnera sur la valeur suivante, pour la modifier répéter l'opération ci-dessus. Dans cet affichage on peut visualiser (mais pas modifier) le mode économie d'énergie et le point de consigne dynamique

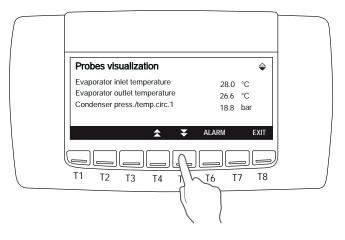
Appuyer EXIT pour revenir à l'écran d'accueil.

Tous les points de consigne réfèrent à la température de retour. Si on demande eau chaude à 45°C et le Dt est 5°C, le point de consigne doit être réglé à 40°C. Au cas où le Dt soit 8°C, le point de consigne doit être réglé à 37°C. Si on demande eau froide à 15°C et le Dt est 5°C, le point de consigne doit être réglé à 20°C. Si le Dt est 8°C, le point de consigne doit être réglé à 23°C

6.3.1 Consignes

Les consignes modifiables par l'utilisateur sont:


Fonction	Limites d'ajustement	Valeur par défaut		
Consigne refroidissement	10÷25°C	23°C		
Password	(Contacter le SAV)			

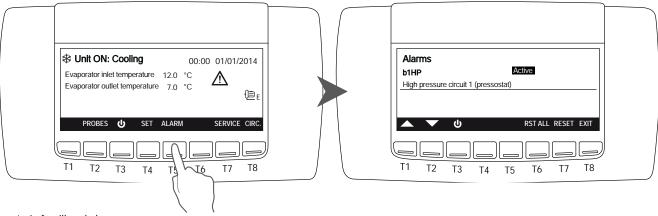

Les unités sont fournies d'un système de contrôle très sophistiqué avec beaucoup d'autres paramètres qui ne sont pas réglables par l'utilisateur final; ces paramètres sont protégés par le mot de passe du Fabriquant.

6.4 Touche PROBES

Pour visualiser tous les paramètres mesurés par les sondes de l'unité appuyer la touche PROBES;

En appuyant la touche T5, on visualisera d'autres valeurs relatives au circuit.

Appuyer EXIT pour revenir à l'écran principal.



6.5 Touche ALARM

Quand une alarme est active, sur l'afficheur le simbole

Pour visualiser l'alarme appuyer ALARM :

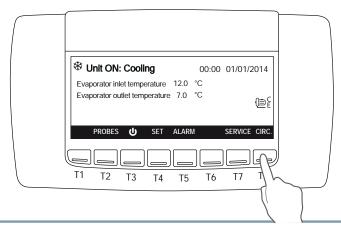
On a trois familles d'alarme:

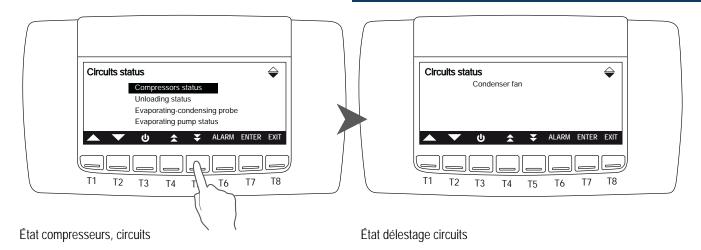
- **Resettables:** dans ce cas, l'alarme n'est plus active et peut être remise à zéro. Positionner le curseur sur l'alarme avec les touches T1 et T2 et appuyer **RESET**.
- · Password: l'alarme n'est plus active, mais un mot de passe est nécessaire pour le remettre à zéro (contacter le Fabricant).
- · Active: l'alarme est encore active.

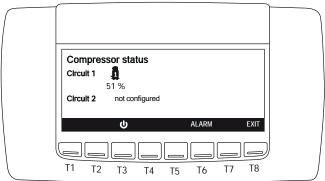
En présence de plusieurs alarmes signalées, on peut les effacer toutes en même temps en appuyant RST ALL. En tout cas, toutes les alarmes, même si remise à zéro, restent mémorisés dans l'historique alarmes.

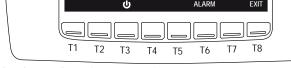
6.6 Touche CIRC

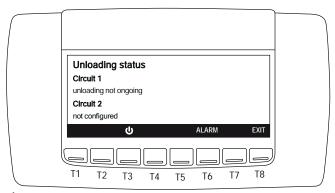
Appuyer sur CIRC pour visualiser les différents paramètres de l'unité:

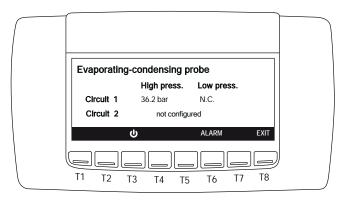

Appuyer sur T4 ou T5 pour passer d'un affichage à l'autre T1 e T2 pour parcourir le menu. Appuyer sur ENTER pour visualiser les paramètres.

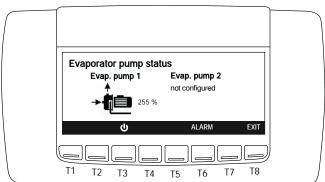

Compresseurs; l'affichage montre les compresseurs présents en chaque circuit et leur état de fonctionnement.

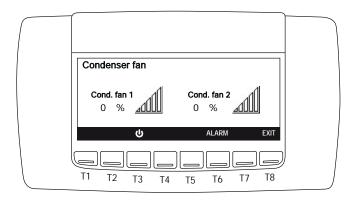

Couleur noir: compresseur en fonction **Couleur blanc**: compresseur en veille


Si on utilise des compresseurs en modulation (typiquement compresseurs à vis ou inverter) une icône à droite du compresseur montre le niveau de modulation.

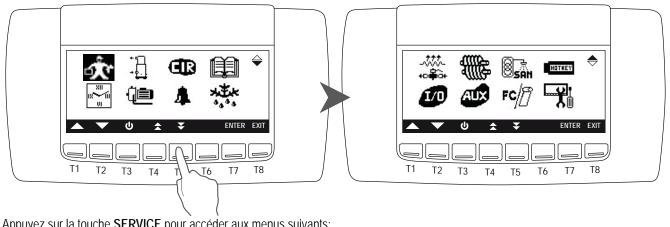

Si on utilise des compresseurs tout ou rien (Scroll) aucune icône est visualisée.







Sondes condensation, évaporation État pompe évaporateur



Ventilation de condensation

6.7 Touche SERVICE

Appuyez sur la touche **SERVICE** pour accéder aux menus suivants:

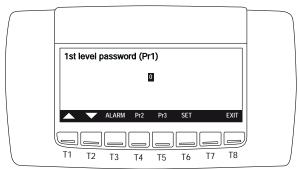
漱	Paramètres de réglage (SAV seulement)	-‱- +c = 3+	Résistances électriques et vannes solénoïdes
18 11	Réglage heure et date	100	État I / O
+ []	État compresseurs		État compresseurs à vis (pas configuré)
	Pompes eau glacée	AUX	État sorties auxiliaires
Œ	État circuits	8 AN	Eau chaude sanitaire (si disponible)
^	Affichage des alarmes	FC/[]	Visualisation free-cooling et panneaux solaires (si disponible)
	Historique des alarmes	HOTKEY	Chargement / téléchargement
****	Dégivrage (si disponible)	7	Panneau de contrôle

Appuyez sur la touche T4 pour afficher le menu tous disponibles..

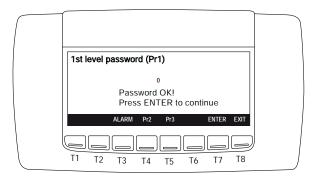
Pour modifier la valeur du paramètre: appuyez sur T1 ou T2 ,appuyez sur ENTER, pour sélectionner le menu souhaité, appuyez sur SET our sélectionner le paramètre.

Pour modifier la valeur du paramètre: appuyez sur T1 ou T2, puis appuyez sur SET pour confirmer.

Appuyer sur la touche EXIT pour revenir au menu principal.



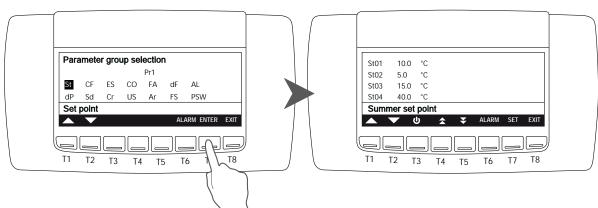
6.7.1 Réglage des paramètres de service



Pour accéder à ce menu, sélectionnez déplacer entre les icônes avec les touches T1 et T2 et appuyez sur ENTER.

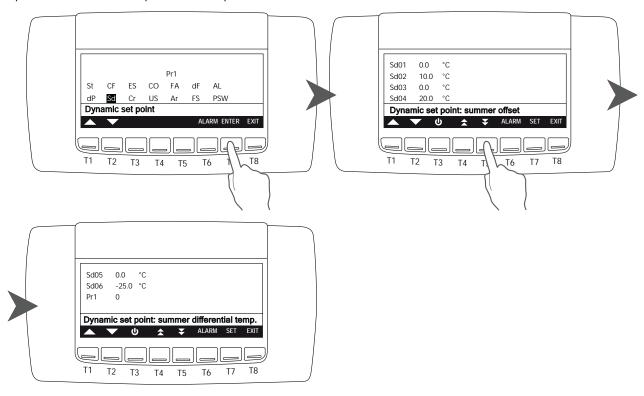
Le système vous demande d'entrer un mot de passe pour accéder à différents niveaux de sécurité.

Le premier niveau permet de modifier certains paramètres comme les points de consigne été, hiver et points de consigne dinamiques. Pour accéder à ce niveau appuyer sur SET, vec T1 afficher 1, donc appuyer à nouveau sur SET pour confirmer. On affichera le masque ci-dessous:


En appuyant sur T1 et T2 vous pouvez sélectionner différents groupes de paramètres à afficher ou à modifier. Avec le mot de passe de niveau 1, il est possible de ne modifier que les points de consigne (St), Consigne dynamique (Sd), et paramètres relatifs au circuit d'eau chaude sanitaire (FS); l'unité doit être en fonctionnement. Appuyez sur ENTER pour sélectionner le groupe de paramètres. D'autres paramètres peuvent être modifiés par les gens de service uniquement avec un mot de passe dédié.

Parameters list:

Code	Signification	Code	Signification
St	Point de consigne	US	Sorties auxiliaires
dP	Visualisation	FA	Ventilation
CF	Configuration	Ar	Résistances électriques
Sd	Point de consigne dynamique	dF	Dégivrage
ES	Économie d'énergie	FS	Eau chaude sanitaire
Cr	Groupes compresseurs	AL	Alarmes
СО	Compresseurs		

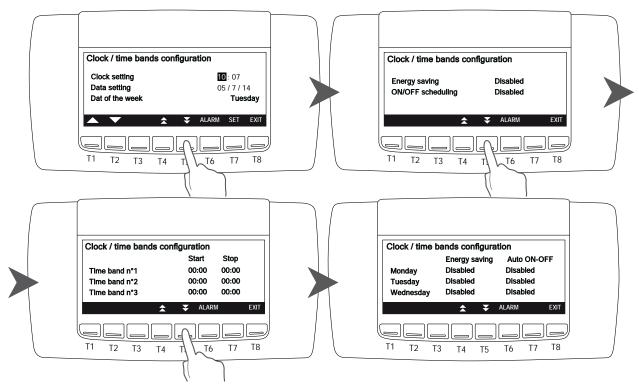

Pour modifier la valeur de la clé de presse de paramètre appuyez sur T1 et T2 sélectionner le paramètre à modifier, appuyez sur SET la valeur commence à clignoter, appuyez sur T1 et T2 pour modifier, appuyez à nouveau SET que pour confirmer. Les valeurs disponibles dans le groupe de paramètres point de consigne (St) sont les suivants: point de consigne d'été (St01), point de

consigne d'hiver (St04), bande d'intervention en mode été (St07) et bande d'intervention en mode hiver (St08).

Les valeurs disponibles dans le groupe de paramètrès Point de consigne dynamique (Sd) sont les suivants: point de consigne dynamique: été offset (Sd01), point de consigne dynamique: hiver offset (Sd02), point de consigne dynamique: l'été en dehors de température (Sd03), point de consigne dynamique: hiver température extérieure (Sd04), point de consigne dynamique: temp différentiel d'été (Sd05) et le point de consigne dynamique: temp différentiel d'hiver (Sd06).

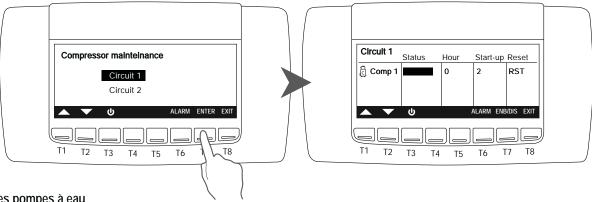
Pour plus d'informations sur les paramètres voir par. 6.3.1 et 6.3.2.

6.7.2 Réglage de la date et l'heure

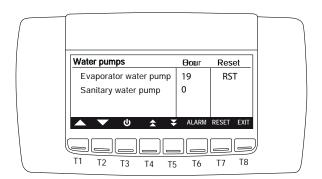

Pour accéder à ce menu, sélectionnez

déplacer entre les icônes avec les touches T1 et T2 et appuyez sur ENTER.

Appuyez sur T1 et T2 pour sélectionner la valeur que vous souhaitez modifier que appuyez sur SET. Le paramètre sélectionné commence à cliqnoter, puis appuyez sur T1 et T2 pour régler la valeur, puis appuyez sur SET pour confirmer.

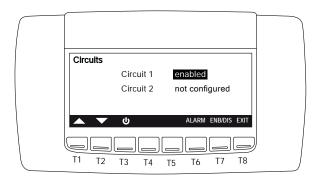

Avec la touche T5 il est possible de lire les informations sur l'économie d'énergie, la planification ON / OFF et bandes temps. Pour modifier l'heure de la bande de temps et pour activer la fonction est nécessaire d'insérer le mot de passe, dans le cas où vous ne disposez pas d'un mot de passe, vous pouvez seulment voir les différents paramètres.

6.7.3 Maintenance du compresseur


Pour accéder à ce menu, sélectionnez déplacer entre les icônes avec les touches T1 et T2 et appuyez sur ENTER.

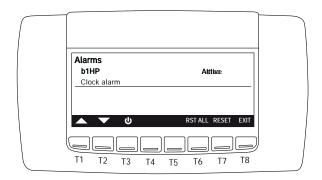
Il est possible d'afficher les compresseurs heure de travail et le nombre d'activations. Sélectionnez le circuit avec les touches T1 et T2 puis appuyez sur ENTER pour afficher les paramètres. La fonction désactivation des compresseurs ENB/DIS ne sont possibles que par des personnes de service.

6.7.4 Les pompes à eau


déplacer entre les icônes avec les touches T1 et T2 et appuyez sur ENTER. Pour accéder à ce menu, sélectionnez Il est possible d'afficher les heures de travail des pompes à eau. La fonction RESET est possible que par des personnes de service.

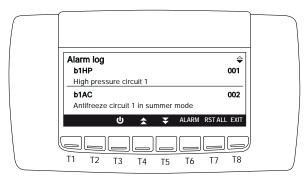
6.7.5 Circuits

Pour accéder à ce menu, sélectionnez déplacer entre les icônes avec les touches T1 et T2 et appuyez sur ENTER. Il est possible d'afficher l'état des circuits. La fonction ENB/DIS est possible que par des personnes de service.



6.7.6 Alarmes

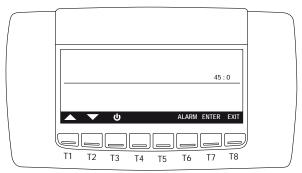
Pour accéder à ce menu, sélectionnez


déplacer entre les icônes avec les touches T1 et T2 et appuyez sur ENTER.

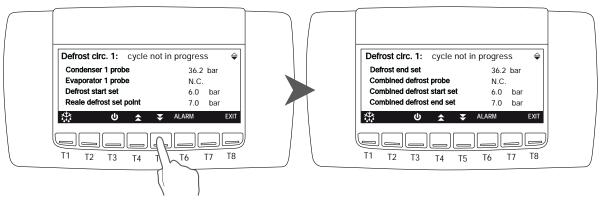
6.7.7 Historique alarmes

Pour accéder à ce menu, sélectionnez déplacer entre les icônes avec les touches T1 et T2 et appuyez sur ENTER.

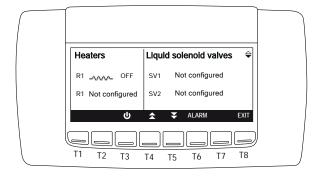
En appuyant sur T4 et T5 il est possible de lire les 99 dernières alarmes. La fonction de remise à zéro de toutes les alarmes RST ALL est possible que par des personnes de service.



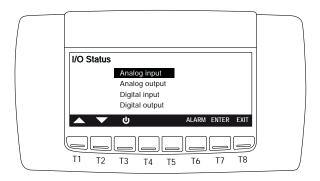
6.7.8 Degivrage


Pour accéder à ce menu, sélectionnez déplacer entre les icônes avec les touches T1 et T2 et appuyez sur ENTER.

Pour chaque circuit, il est possible de lire l'état du dégivrage et, après avoir sélectionné le circuit, en appuyant sur la touche ENTER, il est possible d'afficher certains paramètres liés au dégivrage du circuit (valeurs liées aux sondes et aux points de consigne).

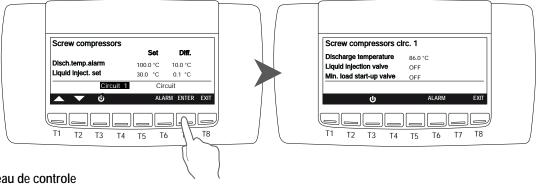


Appuyez sur T4 et T5 pour afficher tous les paramètres disponibles.

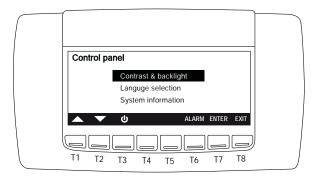

6.7.9 Résistance électrique

Pour accéder à ce menu, sélectionnez déplacer entre les icônes avec les touches T1 et T2 et appuyez sur ENTER. Il est possible de lire l'état des appareils de chauffage électriques.

6.7.10 I/O Status (Entrée/Sortie)


Pour accéder à ce menu, sélectionnez déplacer entre les icônes avec les touches T1 et T2 et appuyez sur ENTER. Il est possible d'afficher l'état des sondes , entrée analogique et une sortie, l'entrée numérique et la sortie.

6.7.11 Compresseurs à vis (si prévu)


Pour accéder à ce menu, sélectionnez déplacer entre les icônes avec les touches T1 et T2 et appuyez sur ENTER. Avec cette configuration, dans l'affichage principal, on peut visualiser les points de consigne de: température de refoulement et injection de liquide. Appuyer les touches T1 et T2 pour sélectionner le circuit, donc valider sur ENTER pour visualiser la température de refoulement et l'état des vannes.

6.7.12 Panneau de controle

Pour accéder à ce menu sélectionner

6.8 Silencier l'alarme acoustique

Pressez et relachez une des touches du clavier à membrane, l'alarme acoustique s'arrête, même si la condition d'alarme reste active.

6.9 Arrêt d'urgence

L'arrêt d'urgence permet d'arrêter l'unité le plus rapidement possible.

Dans le cas où l'activation de cette procédure est nécessaire, procéder comme indiqué ci-après:

- Tourner la poignée du sectionneur général (de couleur jaune et rouge) à la position OFF, de cette façon l'unité s'arrête immédiatement.
- Pousser le bouton jaune et rouge d'urgence.

6.9.1 Réinitialisation après un arrêt d'urgence

Avant de réinitialiser l'unité, s'assurer d'avoir éliminé la cause de l'urgence.

Pour réinitialiser l'unité après un arrêt d'urgence, procéder comme indiqué ci-après:

- Tourner la poignée du sectionneur général à la position OFF (cette opération ne cause le redémarrage immédiat de la machine, mais permet la réinitialisation après une deuxième action volontaire);
- Tourner et réinitialiser le bouton jaune et rouge d'urgence (cette dernière action permet le redémarrage de la machine).

7. MAINTENANCE DE L'UNITÉ

7.1 Remarques générales

Les opérations de maintenance permettent de:

- · Maintenir l'éfficacité de l'unité.
- · Prévenir d'éventuels dégâts.
- · Augmenter le cycle de vie de la machine.

On recommande de prévoir un carnet d'entretien dans le but de maintenir trace des interventions effectuées sur l'unité facilitant ainsi l'éventuelle recherche de pannes.

Les opérations d'entretien doivent être exécutées en conformité des prescriptions aux paragraphes précédents.

Utiliser les dispositifs de protection individuelle prévus par les normes en vigueur, car les têtes et les tuyaux de distribution des compresseurs se trouvent à température élevées et les ailettes des batteries sont tranchantes.

Dans le cas où l'unité n'est pas utilisée pendant la période d'hiver, l'eau contenue dans les tuyaux peut congeler et endommager sérieusement l'unité. Dans le cas où l'unité n'est pas utilisée pendant la période d'hiver purger complètement le circuit, en vérifiant si toutes les parties du circuit sont clairement vides et que chaque siphons intérieurs ou externes soient vides.

A l'intérieur de l'unité, on peut avoir des zones à tension élevée; les interventions dans ces zones doivent être effectuées seulement par du personnel qualifié et formé, habilité en conformité aux lois et aux règlements locaux en vigueur.

Les surfaces des composants installés sur la ligne de refoulement du compresseur et sur la ligne du réfrigérant liquide pourraient arriver à des températures élevées et les contacts peuvent provoquer des brûlures.

Avant d'effectuer toute intervention sur l'unité, il est nécessaire de couper l'alimentation au tableau électrique, en tournant le sectionneur général en position OFF.

Pour effectuer toute intervention qui exige l'ouverture du circuit frigorifique, merci de suivre la procédure suivante:

- 1) Activer la résistance de l'huile du compresseur pour au moins 4 heures
- 2) Récupérer le réfrigérant, en utilisant une bouteille homologuée
- 3) Faire le vide dans le circuit
- 4) Charger le circuit avec de l'azote
- 5) Utiliser des lames orbitales pour sectionner les tuyauteries

Il est interdit de fumer pendant les opérations de maintenance sur le groupe.

7.2 Accès à l'unité

Une fois l'unité installée, l'accès doit être réservé seulement aux opérateurs et techniciens agréés. Le propriétaire de la machine est le légal représentant de la société, collectivité ou la personne physique propriétaire du site où est installée l'unité. Il est responsable du respect de toutes les normes de sécurité indiquées dans ce manuel et des normes en vigueur. Si à cause de la nature du site d'installation on ne peut pas empêcher l'accès à l'unité, il faut prévoir une zone clôturée d'au moins 1,5m de distance sur tous les côtés de l'unité, à l'intérieur de laquelle puissent opérer exclusivement opérateurs et techniciens.

7.3 Maintenance programmée

L'utilisateur doit prévoir une maintenance adéquate de l'unité, par rapport aux indications du Manuel et aux prescriptions de loi et des règlements locaux en vigueur.

L'utilisateur se doit d'assurer que l'unité soit périodiquement inspectée, vérifiée et adéquatement maintenue, selon le type, la taille, l'ancienneté et sa fonction dans le système et aux indications du Manuel.

Si, dans le système, des instruments de détection des fuites sont installés, ils devraient être inspectés au moins une fois par an, pour s'assurer qu'ils fonctionnent correctement.

Pendant sa vie opérative, l'unité devra être inspectée et vérifiée selon les lois et les règlements locaux en vigueur. Particulièrement, sauf que des spécifications plus sévères n'existent pas, il faut de suivre les indications dans le tableau ci-dessous (voir EN 378-4, ann. D), avec référence aux situations décrites.

SITUATION	Inspection visuelle	Essai de pression	Recherche des fuites
Α	X	X	X
В	X	X	X
С	X		X
D	X		X

A après un arrêt de la machine de plus que deux ans; il faut de rempla	acer tous les composants pas appropriés. Il est interdit de réaliser des vérifi-
cations aux pressions supérieures à celles de projet.	

- Inspection après une réparation, ou après une modification significative du système ou de quelque composant. La vérification se peut limiter aux composants impliqués dans l'intervention, mais, si une fuite du fluide frigorigène est présente, il faut réaliser une recherche des fuites sur le système entier.
- C Inspection après l'installation de la machine dans une position différente par rapport à celle originale. Si des conséquences sur la résistance mécanique peuvent être présents, il faut faire référence au point A.
 - Recherche des fuites, en conséquence d'un soupçon bien fondé de déversement de fluide réfrigérant. Le système doit être examiné pour trouver les fuites, par des moyens directs (systèmes en mesure de prouver l'existence de la fuite) ou indirects (déduction de la présence de la fuite par l'analyse des paramètres de fonctionnement), en concentrant sur les parties plus à risque de déversement (par exemple, les jonctions).

D

En cas de détection d'un défaut, qui compromit la sécurité de fonctionnement, l'unité ne pourra pas être redémarrée, avant de l'avoir éliminé.

7.4 Maintenance extraordinaire

7.4.1 Procédure pour le vide et la charge de réfrigérant

La charge de réfrigérant R290 est une opération assez délicate qui, sinon effectuée correctement peut causer des dommages au compresseur, vue l'haute miscibilité de l'huile dans le réfrigérant liquide qui peut amener, en cas de considérable quantité de liquide dans le bac, au fonctionnement du compresseur sans lubrifiant.

Après avoir effectué le vide dans le circuit, la procédure correcte prévoit les opérations suivantes

- 1. Rupture du vide avec l'unité alimentée.
 - a. Vérifier que les robinets des compresseurs sont ouverts. Autrement, il faut les ouvrir. .
 - b. Dans chaque circuit, introduire la charge minimale de réfrigérant, suffisante pour effecteur l'épreuve des fuites. Introduire une petite quantité de réfrigérant et le laisser évaporer tant que la pression du manomètre se stabilise ; répéter l'opération jusqu'à atteindre une valeur stable d'environ 2 bar.
 - c. Procéder à la vérification d'éventuelles fuites
 - d. Fermer les robinets des compresseurs.
- 2. Programmation contrôle et driver (si nécessaire) unité alimentée.
 - a. Maintenir les robinets des compresseurs fermés
 - b. Une fois effectuée la programmation, fermer les détendeurs électroniques et s'assurer de l'étanchéité de la fermeture par l'aimant correspondant.

ATTENTION: le détendeur se ferme après la programmation du driver, s'il est seulement alimenté, il ne se ferme pas.

- c. Configurer l'unité en modalité été/production eau glacée (pour unités à 4 tubes et/ou pompes à chaleur).
- 3. Charge réfrigérant unité alimentée et UN CIRCUIT PAR FOIS
 - a. Maintenir les robinets des compresseurs fermés.
 - b. S'assurer d'avoir alimenté la résistance du carter au moins 12 heures avant de commencer l'opération de charge et que les détendeurs électroniques soient toujours fermés par l'aimant correspondant.
 - c. À compresseur arrêté, introduire la charge minimale de réfrigérant nécessaire pour le démarrage (c.a.d. pour éviter l'interve tion du pressostat de basse pression) ; dans cette phase, ne pas introduire une charge supérieure à 1/3 de celle indiquée sur la plaque de l'unité ; effectuer la charge sur la ligne liquide de la batterie.
 - d. Ouvrir les robinets et démarrer le compresseur du premier circuit.
 - e. Sur l'éventuel second circuit, ne pas démarrer le compresseur et laisser les robinets fermés.
 - f. Charger graduellement le réfrigérant en amont de l'évaporateur tant que le détendeur commence à régler.
 - g. EN CAS DE CIRCUIT AVEC COMPRESSEURS EN TANDEM:
 - Laisser le PREMIER compresseur en marche pour au moins 15 minutes, puis l'arrêter.
 - Démarrer le second compresseur et le laisser en fonction pour au moins 15 minutes, puis l'arrêter.
 - h. Répéter les points b, c,d,f, g pour le second circuit.
 - i. Vérifier et compléter la charge avec l'unité à régime à 100% des conditions nominales.

7.4.2 Recharge d'huile

S'il est nécessaire de recharger l'huile jusqu'à 0,5 kg, il est possible d'utiliser le raccord situé dans la cuve du compresseur. Si, au contraire, il est nécessaire de remplir ou de recharger le séparateur d'huile du côté du débit (dans les modèles qui en sont pourvus), il est conseillé d'utiliser le raccord de remplissage prévu sur le conduit de sortie de l'huile et situé entre le robinet et le séparateur d'huile.

7.5 Contrôles périodiques

Les opérations de mise en service doivent être exécutées en conformité des prescriptions aux paragraphes précédents.

Toutes les opérations décrites dans ce chapitre DOIVENT ÉTRE ÉXÉCUTÉE SEULEMENT PAR DU PERSON-NEL QUALIFIÉ. Avant chaque opération d'entretien sur l'unité, soyez sûrs que l'alimentation électrique solt débranchée. La tête et les lignes distribution des compresseurs sont habituellement à haute température. Soyez très prudents en opérant dans leurs environ. Les radiateurs à ailettes en aluminium sont très aiguisés et peuvent provoquer des blessures sérieuses. Soyez très prudents en opérant dans leurs environs. Après avoir assuré l'entretien fermez soigneusement l'unité avec les panneaux et fixez-les soigneusement avec les vis fournis.

7.5.1 Réseau électrique et dispositifs de régulation

Opérations à effectuer	Périodicité								
	Chaque jour	Chaque mois	Tous les 2 mois	Tous les 6 mois	Chaque année	Tous les 5 années	Quand nécessaire		
Vérifier que l'unité fonctionne régulièrement et que des alarmes ne soient présentes	х								
Inspecter visuellement l'unité		Х							
Vérifier le bruit et les vibrations de l'unité		Х							
Vérifier la fonctionnalité des dispositifs de sécurité et des interblocs				Χ					
Vérifier les prestations de l'unité				Х					
Vérifier l'énergie consommée par les différentes appareils (compresseurs, ventilateurs, etc.)				Х					
Vérifier la tension d'alimentation de l'unité				Х					
Vérifier la fixation des câbles sur les serre-câbles appropriés				Х					
Vérifier l'intégrité du revêtement isolant des câbles électriques					Х				
Vérifier l'état et le fonctionnement des compteurs					Х				
Vérifier le fonctionnement du microprocesseur et de l'afficheur			Х						
Nettoyer les composants électriques et électroniques par la poussière éventuel- lement présente					Х				
Vérifier le fonctionnement et le calibrage des sondes et des transducteurs				Х					
Verificare il funzionamento e la taratura delle sonde e dei trasduttori					Х				
Vérifier le fonctionnement de la sonde du niveau du réfrigérant dans l'évaporateur (si prévu)					Х				
Vérifier l'état et le fonctionnement du contact sec « leakeage alarm » identifié par « U20-U21 » dans le bornier					Х				
Effectuer la procédure d'étalonnage ou l'essai fonctionnel du capteur de fuite de réfrigérant (*)					Х				

(*) Suivez les instructions du paragraphe dédié du manuel

7.5.2 Batterie ventilateurs et circuit frigorifique et hydraulique

Opérations à effectuer		Périodicité								
	Chaque jour	Chaque mois	Tous les 2 mois	Tous les 6 mois	Chaque année	Tous les 5 années	Quand nécessaire			
Inspecter visuellement la batterie		Х								
Effectuer le nettoyage de la batterie à ailette (1)				Х						
Vérifier le débit d'eau et/ou des fuites éventuelles		Х								
Vérifier que l'interrupteur de débit fonctionne correctement				Х						
Effectuer le nettoyage du filtre métallique installé sur le conduit de l'eau (2)				Х						
Vérifier le bruit et les vibrations des ventilateurs		Х								
Vérifier la tension d'alimentation des ventilateurs				Х						
Vérifier les branchements électriques des ventilateurs					Х					
Vérifier le fonctionnement et la calibration du système de régulation de la vitesse des ventilateurs					Х					
Vérifier le fonctionnement de la vanne à 4 voies (si présente)					Х					
Vérifier le fonctionnement de la vanne à 3 voies (si présente)					Х					
Vérifier la présence de l'air dans le circuit frigorifique		Х								
Vérifier la couleur de l'indicateur d'humidité dans la conduite de liquide				Х						
Vérifier des éventuelles fuites de fréon							Χ			

(1) En cas d'installation réalisée dans un endroit avec une présence élevée de sable, poussière ou pollen, ou en proximité d'aéroports, industries ou zones avec un taux de pollution de l'air élevé, il est nécessaire de prévoir l'inspection et le nettoyage des batteries tous les 3 mois (ou plus souvent).

 $^{(3)}$ Peut être effectué avec une fréquence plus élevée (même chaque semaine) en fonction du Δt .

7.5.3 Compresseurs

Opérations à effectuer	Périodicité								
	Chaque jour	Chaque mois	Tous les 2 mois	Tous les 6 mois	Chaque année	Tous les 5 années	Quand nécessaire		
Inspecter visuellement les compresseurs		Х							
Vérifier le bruit et les vibrations des compresseurs		Х							
Vérifier la tension d'alimentation des compresseurs				Х					
Vérifier les branchements électriques des compresseurs					Х				
Vérifier le niveau d'huile dans les compresseurs par l'indicateur approprié				Х					
Vérifier que les résistances de carter soient branchés et que fonctionnent correctement		х							
Vérifier l'état des câbles électriques des compresseurs et leur fixation sur les serre-câbles				Х					

Les opérations à réaliser chaque jour ou chaque mois peuvent être réalisé directement par le propriétaire de l'installation. Les autres interventions doivent être effectués par du personnel qualifié et suffisamment entrainés.

Il est interdit d'effectuer aucune opération de nettoyage avant d'avoir débranché l'appareil du réseau électrique, en tournant l'interrupteur général en position OFF. Il est aussi interdit de toucher l'appareil aux pieds nus, ou avec des parties du corps mouillés ou humides.

Les interventions sur le circuit frigorifique doivent être effectuées par des techniciens adéquatement qualifiés et entrainés, qualifiés en fonction des lois et des règlements locaux en vigueur.

MANUEL DE L'UTILISATEUR RAS MC Kp-MC VB Kp-F Kp / GPS Kp / PAS Kp

7.5.4 Nettoyage des batteries de condensation à micro-canaux (versions RAS MC Kp / MC VB Kp)

Pour garantir le fonctionnement correct de l'unité et le maintien des prestations dans le temps, il est nécessaire d'inspecter périodiquement l'état des batteries de condensation à micro-canaux et les nettoyer au moins une fois par an si l'unité n'est pas installée dans des environnements intéressés par des valeurs élevées de pollution de l'air, ou loin de sites industriels ou centres avec une densité de population très élevée.

Il est important d'effectuer le nettoyage de la surface d'exchange des batteries micro-canal, en éliminant tout matériel solide qui empêche la correcte circulation de l'air et donc aggrave l'exchange thermique. Le nettoyage effectué périodiquement permet de garder des valeurs de performances élevées et d'augmenter la durée des batteries et de l'unité.

On doit effectuer le nettoyage des batteries non traitées en éliminant avant tout la saleté déposée sur la surface des échangeurs en utilisant un aspirateur ou de l'air comprimé.

Seulement après avoir éliminé les éléments solides de la surface des batteries, il est possible de procéder avec le lavage à eau pure sans aucun agent chimique ou sans d'autre détergent qui pourrait compromettre l'intégrité de la couche extérieure d'oxyde protégeant l'échangeur et qui, si endommagée, pourrait favoriser des éventuels phénomènes de corrosion.

Il est interdit d'utiliser d' hydro-polisseuses ou d'agents chimiques (ou de détergents d'autre nature) pour le nettoyage des batteries micro-canal.

De dommages éventuels causés par l'haute pression du jet d'eau ne seront pas reconnus.

Lorsque on travaille sur l'unité, il faut faire attention à ne pas endommager la surface des batteries par les parties en métal des instruments utilisés pendant les opérations de nettoyage.

7.5.5 Contrôles périodiques du capteur de détection de gaz réfrigérant

Il est impératif que le capteur de détection de gaz réfrigérant fasse l'objet d'inspections visuelles et de contrôles fonctionnels réguliers afin de vérifier son bon fonctionnement et de garantir un niveau de sécurité conforme. Ces contrôles doivent être effectués par du personnel dûment formé et qualifié, selon les procédures et les fréquences décrites ci-dessous.

Inspection visuelle

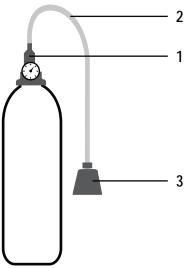
L'inspection visuelle doit être effectuée au moins tous les 6 mois et plus fréquemment si les conditions environnementales dans lesquelles l'appareil fonctionne l'exigent.

L'objectif de l'inspection visuelle est principalement de vérifier que:

- La tête du capteur est exempte de poussière, de saleté ou de tout autre résidu
- Les câbles électriques sont intacts et conformes à la documentation fournie avec l'appareil

Contrôle fonctionnel

Le contrôle fonctionnel doit être effectué annuellement et dans tous les cas dans la limite maximale de 400 jours de fonctionnement du capteur sous tension.

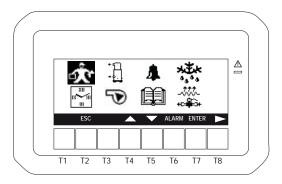


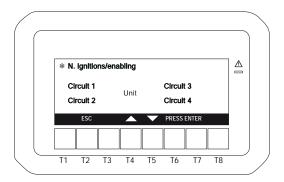
Si le contrôle fonctionnel du capteur n'est pas effectué dans la limite totale de 400 jours de fonctionnement du capteur sous tension, l'appareil se bloque, en signalant sur l'écran : « Alarme check sniffer » et ne peut redevenir opérationnel qu'après un contrôle fonctionnel réussi selon la procédure décrite.

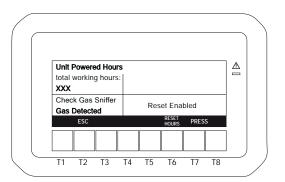
MANUEL DE L'UTILISATEUR RAS MC Kp-MC VB Kp-F Kp / GPS Kp / PAS Kp

Pour effectuer le contrôle fonctionnel, il est nécessaire de disposer d'une bombonne échantillon calibrée pour distribuer 500 ml/min d'un mélange contenant 0,85% de propane dans de l'air (50% de LII) en suivant la procédure décrite (à lire attentivement avant de commencer l'opération).

1. Visser le débitmètre (1) sur la bombonne et connecter le tube transparent entre la bombonne et l'adaptateur (2). Visser ensuite l'adaptateur sur la tête du capteur (3)


- 2. Lorsque l'appareil est sous tension et opérationnel, appuyer sur le bouton bleu situé sur le panneau extérieur du tableau électrique
- 3. L'appareil se met sur OFF et entre en mode « Alarme check sniffer » qui peut être vu sur l'écran et restera dans cet état pendant les 10 prochaines minutes
- Commencer à distribuer 500ml/min de réfrigérant et s'assurer que dans les 70 secondes qui suivent, le capteur passe en alarme pour dépassement du seuil maximum (réinitialisation manuelle du capteur) (*)
- 5. Les ventilateurs d'urgence ATEX et les alarmes lumineuses du tableau électrique doivent être actifs
- 6. Retirer l'adaptateur précédemment vissé sur la tête du capteur et attendre 5 minutes pour permettre au système de ventilation de disperser toute trace éventuelle de réfrigérant
- 7. Procéder à la réinitialisation du capteur en agissant sur l'interrupteur général de l'unité (alimentation OFF/ON)
- 8. Le capteur effectuera la procédure d'auto-étalonnage et si celle-ci est réussie, l'unité retournera à l'état de fonctionnement ON
- 9. Accéder au masque dédié via l'écran et procéder à la remise à zéro du compteur horaire, qui repartira de 0 (**)
- 10. Réinitialiser l'alarme du renifleur de contrôle en maintenant enfoncé le bouton d'alarme sur l'écran pendant quelques secondes


(*) Si l'alarme ne se déclenche pas dans les 70 secondes suivant le début de la distribution, il est nécessaire de remplacer la tête.


(**) Interface DIXEL à laquelle il faut accéder pour réinitialiser le compteur horaire Appuyer sur la touche « service » pour accéder à ce masque

Accéder au menu dédié aux compresseurs et sélectionner "Unit "

On accède au masque suivant qui permet de redémarrer le compteur horaire

Tout contrôle périodique et/ou toute intervention d'entretien sur le capteur doit être consigné dans un carnet de bord, en indiquant la date à laquelle le contrôle a été effectué, le nom du technicien qui l'a effectué, les anomalies constatées et les temps de réponse relevés lors de l'essai de fonctionnement.

Il est nécessaire d'ef fectuer soigneusement la procédure indiquée par le Fabriquant.

MANUEL DE L'UTILISATEUR RAS MC Kp-MC VB Kp-F Kp / GPS Kp / PAS Kp

7.5.6 Nettoyage des batteries de condensation à micro-canaux avec traitement de surface de protection (options ECP / PCP)

Le nettoyage des batteries avec traitement de surface doit être réalisé en éliminant avant tout la saleté déposée sur la surface des échangeurs en utilisant un aspirateur ou de l'air comprimé.

Seulement après avoir éliminé les éléments solides de la surface des batteries, il est possible de procéder avec le lavage à eau pure, éventuellement avec l'ajoute des produits de nettoyage standard, avec pH compris entre 4 et 10. En ce cas, il est très important de réaliser un rinçage à eau final pour éliminer toutes traces du détergent utilisé de la surface de la batterie.

7.5.7 Commutation saisonnière été/hiver

Avant d'activer la commutation saisonnière du cycle hivernal à celui estival, nous recommandons forcement de démarrer l'unité en modalité hivernale pour éviter des retours dangereuses de liquide au compresseur par la conduite d'aspiration. Après quelque minute de fonctionnement en cette modalité, il est possible d'arrêter l'unité et d'effectuer la commutation au cycle estivale en toute sécurité.

7.5.8 Fin de saison

Si on prévoit d'arrêter l'unité pour une période longue, le circuit hydraulique doit être vidangé de façon qu'aucune trace d'eau ne soit présente dans les tuyaux et dans l'échangeur. Cette opération est obligatoire si, pendant l'arrêt saisonnier, on prévoir que la température extérieure baisse au-dessous du point de congélation du mélange utilisé (opération saisonnière typique). Avant de remplir le circuit hydraulique, un lavage du même sera nécessaire.

Au cas où on n'utiliserait pas l'unité ou pendant les arrêts saisonniers, on conseille de fermer les robinets sur le refoulement et l'aspiration présents sur chaque compresseur. Avant de mettre en service l'unité après un long arrêt, il faut être sûr d'avoir alimenté les réchauffeurs de l'huile pour au moins 12 heures. On doit effectuer le mise en fonction de l'unité juste après l'ouverture des robinets sur les compresseurs.

7.5.9 Arrêt

Pour arrêter l'unité, on doit appuyer sur le bouton ON/OFF du clavier du microprocesseur, en le positionnant sur OFF.

Si on prévoit que l'unité reste en cet état pour plus de 24 heures, on devra tourner le sectionneur général en position OFF, pour couper l'alimentation électrique.

Au cas où l'on aurait relevé des anomalies pendant le fonctionnement de l'unité, on doit les résoudre au plus vite pour éviter qu'elles soient encore présentes au démarrage suivant.

7.6 Réparation de circuit réfrigérant

Avant d'intervenir sur le circuit frigorifique avec tout instrument qui peut générer des étincelles, chaleur, flammes libres ou toute autre source d'ignition, il est obligatoire de vidanger complètement et de souffler le circuit frigorifique, afin de s'assurer gu'aucune trace de réfrigérant ne soit pas présente.

Le système doit être chargé avec de l'azote, en utilisant une bouteille du gaz avec une valnne de réduction de pression, jusqu'à ce que la pression de 15 bar soit atteinte. Toute fuite peut être trouvée en utilisant un détecteur de fuite (liquid savoneux spécifique). Dans le cas où des bulles apparaissent, il est impératif de décharger complètement le circuit de réfrigérant puis de braser l'endroit de la fuite avec une brasure appropriée.

N'utilisez jamais de l'oxygène au lieu de l'azote pour ce contrôle risque d'explosion.

Les circuits frigorifiques fonctionnant avec fréon nécessitent d'attentions particulières lors de l'installation et de l'entretien, pour garantir le bon fonctionnement.

Il est donc nécessaire

- Éviter de réintégrer de l'huile différente de celle présente dans le circuit.
- En cas de remplacement de tout composant du circuit frigorifique, ne laissez jamais le circuit ouvert plus de 15 minutes.
- En particulier, en cas de remplacement du compresseur, compléter l'installation dans le délais indiqué, après avoir ôté les bouchons en caoutchouc.
- En cas de remplacement du compresseur, il est recommandé le lavage du circuit frigorifique avec des produits adéquats en ajoutant, pour le temps nécessaire, un filtre anti-acide.
- En condition de vide n'alimentez jamais le compresseur.

8. MISE A L'ARRET DÉFINITIF DE L'APPAREIL

8.1 Mise hors circuit

Toute opération de mise hors service doit être exécutée par du personnel agrée en conformité aux normes en vigueur dans le pays de destination.

- Éviter fuites et versements.
- · Avant de déconnecter l'unité récupérer si présent:
 - · Le gaz réfrigérant;
 - Les solutions antigel dans le circuit hydraulique;
 - · L'huile lubrifiante des compresseurs

En attente de l'élimination, l'unité peut être stockée à l'extérieur, sous condition que les circuits sont intègres et fermés.

8.2 Élimination, récupération et recyclage

La carcasse et les composantes constituant la machine si elles ne sont pas re utilisables, doivent être démontées triés et récupérés selon leur nature; particulièrement le cuivre et l'aluminium, qui sont présents en quantité non négligeable dans l'unité. Ces opérations permettent un recyclage des matériaux efficace, réduisant ainsi son impacte environnemental.

The refrigerant circuit of the unit contains lubricant oil that binds the disposal mode of components .

8.3 Directive RAEE (UE uniquement)

Le symbole de la poubelle barrée signifie que le produit est conforme aux normes sur les déchets électriques et électroniques.

L'abandon du produit dans l'environnement ou son élimination illégale est puni par la loi.

Ce produit est compris dans le champ d'application de la Directive 2012/19/UE qui concerne la gestion des déchets d'appareils électriques et électroniques (RAEE).

Il est interdit d'éliminer l'appareil avec les déchets ménagers, étant donné qu'il est composé par des différents matériaux, qui peuvent être recyclés dans les structures appropriées. Informez-vous chez les autorités locales pour connaître le positionnement du centre de collecte et de récupération pour le traitement et le conséquent correct recyclage du produit.

Le produit n'est pas potentiellement dangereux pour la santé humaine et l'environnement, du moment que aucune substance nocive aux termes de la Directive 2011/65/EU (RoHS) n'est présente, mais peut avoir des impacts négatives sur l'écosystème, si abandonné dans l'environnement. Lisez attentivement les instructions avant d'utiliser l'appareil pour la première fois. Il est fortement déconseillé d'utiliser le produit pour un emploi différent de celui pour lequel il a été conçu ; la mauvaise utilisation du même peut entraîner un risque de décharge électrique.

9. RÉSOLUTION DES DISFONCTIONNEMENTS

9.1 Dépannage

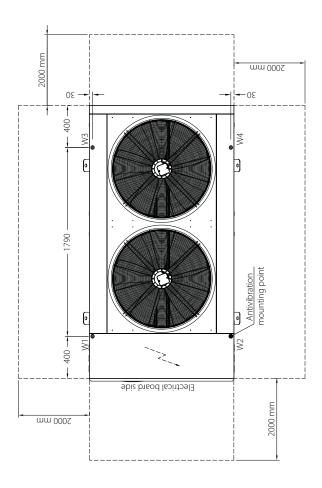
Toute unité est vérifiée et testée en usine avant la livraison, il est toutefois possible que durant le fonctionnement il y ait des anomalies ou panne.

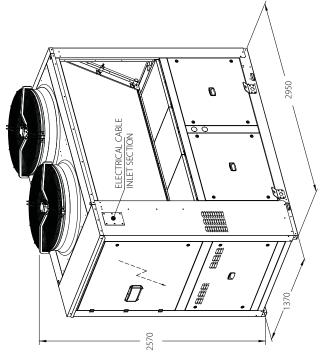
ON RECOMMENDE DE REINITIALISER TOUTE ALARME SEULEMENT APRÈS AVOIR RÉINITILAISÉ LA CAUSE QUI L'A GÉNÉRÉE; RÉINTIALISATION RÉPÉTÉES PEUVENT CAUSER DES DOMMAGES IRRÉVERSIBLES À L'UNITÉ ET ENTRAÎNERA LA PERTE DE LA GARANTIE.

Problème	Symptôme	Cause	Remède
da ACF1 a ACF15	Alarme de configuration	Erreur de configuration du microprocesseur.	Contacter le Fabriquant
AEE	Alarme de EPROM	Grave endommagement du microprocesseur.	Éteindre l'unité et après quelque seconde la rallumer, si l'alarme s'affiche encore contacter l'assistance.
AEFL	Alarme débit évaporateur	Présence d'air ou saleté dans le circuit hydraulique utilisateur.	Purgez complètement l'air, controller la propreté du système (filtre) et nettoyez si nécessaire.
AEUn	Alarme délestage compresseur (seulement unités à 2 compresseurs)	Température de retour circuit utilisa- teur trop élevée.	Attendre que la température de l'eau de l'utilisateur baisse.
b1 Cu b2 Cu	Alarme unloading HP compresseur circuit 1 - circuit 2 (unité avec 2 compresseurs par circuit)	Pression de condensation trop élevée.	Attendez que la pression de condensation baisse.
b1 Eu b2 Eu	Alarme unloading bassa temperatura circuito 1- circuito 2	Température de sortie trop basse.	Attendez que la température de sortie augmente.
da AP1 a AP10	Alarme sonde ambiante de l'entrée 1 à l'entrée 10		
AtE1	Alarme thermique de la pompe de l'évaporateur1	Connexions électriques dèfectueuses. Sonde défectueuse.	Contrôler les connexions électriques entre sonde et bornier, si elles sont correctes contacter l'assistance pour remplacer la sonde.
AtE2	Alarme thermique de la pompe de l'évaporateur2		

MANUEL DE L'UTILISATEUR RAS MC Kp-MC VB Kp-F Kp / GPS Kp / PAS Kp

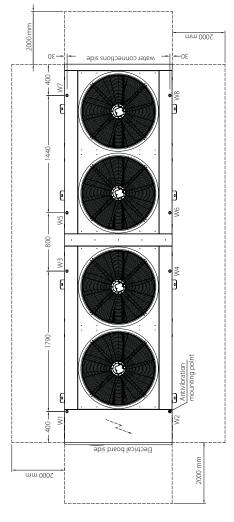
Problème	Symptôme	Cause	Remède
B1 HP	Alarme pressostat haute pression	En mode chauffage: Débit du liquide du circuit utilisateur insuffisant Débit du liquide du circuit d'eau chaude sanitaire insuffisant.	Rétablir le bon débit d'eau au circuit utilisateur. Rétablir le bon débit d'eau au circuit d'eau chaude sanitaire.
B2 HP	circuit 1 circuit 2	En mode de refroidissement: Débit d'air insuffisant au ventilateur source. Débit du liquide du circuit d'eau chaude sanitaire insuffisant.	Rétablir le bon débit d'air au ventilateur source. Rétablir le bon débit d'eau au circuit d'eau chaude sanitaire.
b1AC b2AC	Alarme antigel circuit 1-2 (mode froid)	Température de l'eau trop basse.	Vérifier le point de consigne température utilisateur. Vérifier débit eau utilisateur.
b1AH b2AH	Alarme antigel circuit 1-2 (mode chaud)	Température de l'eau trop basse.	Vérifier le point de consigne température utilisateur.
b1dF b2dF	Alarme dégivrage circuit 1-2 (limite maximum)	Délais de dégivrage trop élevé. Température externe hors limites opérationnelles. Fuite de réfrigérant.	Vérifier le point de consigne du dégivrage. Rétablir les normales conditions opérationnelles. Localiser la fuite et la réparer.
b1hP b2hP	Alarme transducteur de haute pression circuit 1-2	Transducteur défectueux.	Remplacez le transducteur défectueux.
B1LP B2LP	Alarme pressostat de basse pression circuit 1-2	Fuite de réfrigérant.	Localiser la fuite et la réparer.
b1IP b2IP	Alarme transducteur de basse pression circuit 1-2	Transducteur défectueux.	Remplacez le transducteur défectueux.
b1tF b2tF	Alarme de senseur de temp. ventilateur source.	Absorption hors limites operationnelles.	Vérifier le bon fonctionnement du ventilateur et, si nécessaire, le remplacer.
C1tr	Alarme de senseur de temp. compresseur 1	Absorption hors limites operationnelles	Remplacer le compresseur.
C2tr	Alarme de senseur de temp. compresseur 2	Absorption hors limites operationnelles	Remplacer le compresseur.
C3tr	Alarme de senseur de temp. compresseur 3	Absorption hors limites operationnelles	Remplacer le compresseur.
C4tr	Alarme de senseur de temp. compresseur 4	Absorption hors limites operationnelles	Remplacer le compresseur.

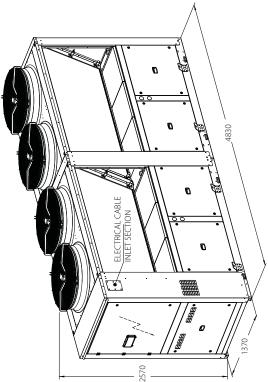



10. SCHÉMAS DIMENSIONNELS

Les plans dimensionnels sont indicatifs et pas contraignants, donc il faut toujours demander les schémas dimensionnels avant de préparer le réseau pour l'installation de l'unité.

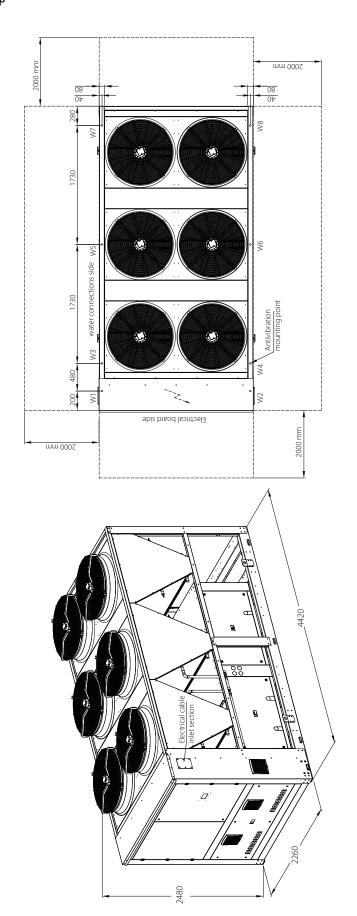
RAS 521-1001 MC Kp



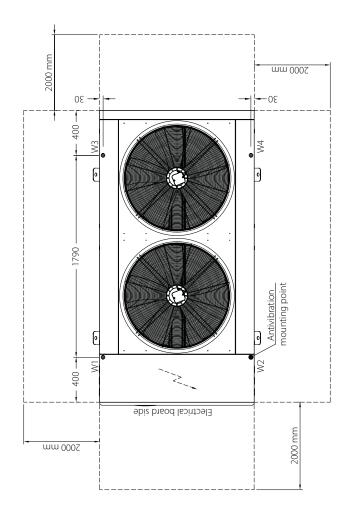


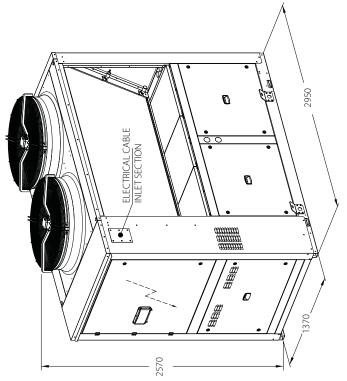
	RAS 521 MC Kp	RAS 521 MC Kp RAS 591 MC Kp RAS 721 MC Kp RAS 871 MC Kp RAS 1001 MC Kp	RAS 721 MC Kp	RAS 871 MC Kp	RAS 1001 MC Kp
Global weight (Kg)	1098	1100	1212	1310	1316
Point W1 (Kg)	338	339	358	379	380
Point W2 (Kg)	338	339	358	379	380
Point W3 (Kg)	211	211	248	276	278
Point W4 (Kg)	211	211	248	276	278

RAS 1402-2902 MC Kp



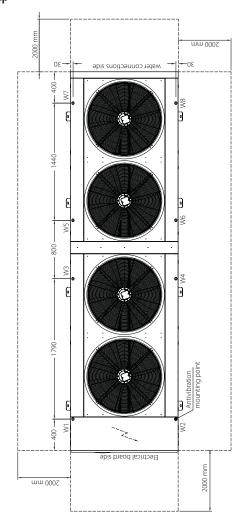
	RAS 1402 MC Kp	RAS 1702 MC Kp	RAS 1402 MC Kp RAS 1702 MC Kp RAS 2102 MC Kp RAS 2402 MC Kp RAS 2902 MC Kp	RAS 2402 MC Kp	RAS 2902 MC Kp
Global weight (Kg)	2016	2112	2178	2544	2630
Point W1 (Kg)	295	307	315	370	379
Point W2 (Kg)	298	307	315	370	379
Point W3 (Kg)	261	272	281	325	345
Point W4 (Kg)	261	272	281	325	345
Point W5 (Kg)	239	249	260	299	309
Point W6 (Kg)	239	249	260	299	309
Point W7 (Kg)	312	228	233	278	282
Point W8 (Kg)	312	228	233	278	282

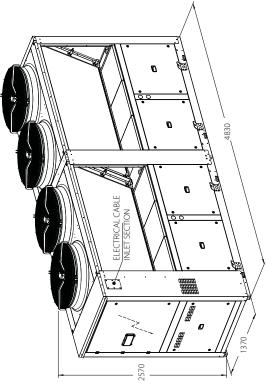

RAS 3402 MC Kp



	RAS 3402 MC Kp
Global weight (Kg)	3132
Point W1 (Kg)	395
Point W2 (Kg)	410
Point W3 (Kg)	399
Point W4 (Kg)	420
Point W5 (Kg)	381
Point W6 (Kg)	403
Point W7 (Kg)	345
Point W8 (Kg)	379

RAS 521-1001 MC VB Kp

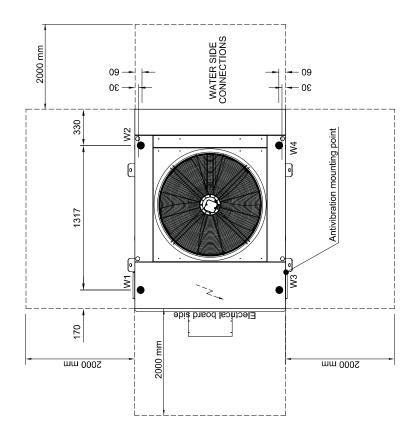


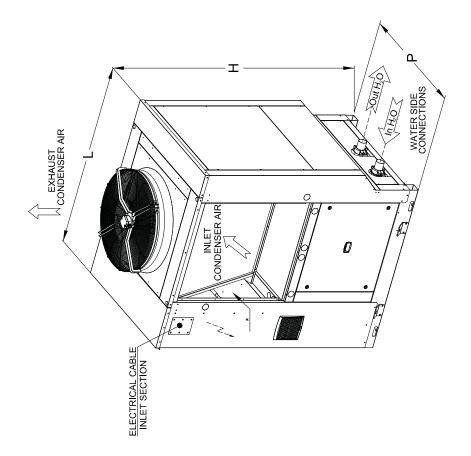


	RAS 521 MC VB Kp	RAS 591 MC VB Kp	RAS 721 MC VB Kp	RAS 521 MC VB Kp RAS 591 MC VB Kp RAS 721 MC VB Kp RAS 871 MC VB Kp RAS 1001 MC VB Kp	RAS 1001 MC VB Kp
Global weight (Kg)	1056	1060	1170	1248	1258
Point W1 (Kg)	331	330	358	372	376
Point W2 (Kg)	331	330	358	372	376
Point W3 (Kg)	197	194	227	252	253
Point W4 (Kg)	197	194	227	252	253

RAS 1402-2902 MC VB Kp

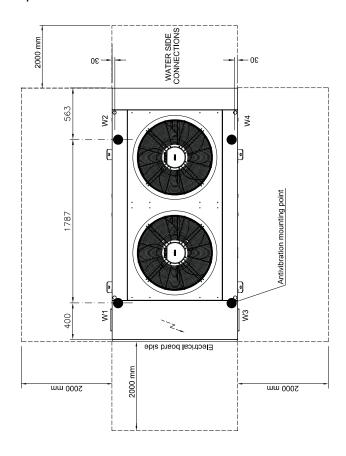
	RAS 1402 MC VB Kp	RAS 1702 MC VB Kp	RAS 1402 MC VB Kp RAS 1702 MC VB Kp RAS 2102 MC VB Kp RAS 2402 MC VB Kp RAS 2902 MC VB Kp	RAS 2402 MC VB Kp	RAS 2902 MC VB Kp
Global weight (Kg)	1956	2110	2188	2540	2632
Point W1 (Kg)	278	297	306	346	357
Point W2 (Kg)	278	297	306	346	357
Point W3 (Kg)	254	273	283	297	312
Point W4 (Kg)	254	273	283	297	312
Point W5 (Kg)	727	250	259	295	301
Point W6 (Kg)	727	250	259	295	301
Point W7 (Kg)	219	235	246	332	346
Point W8 (Kg)	219	235	246	332	346

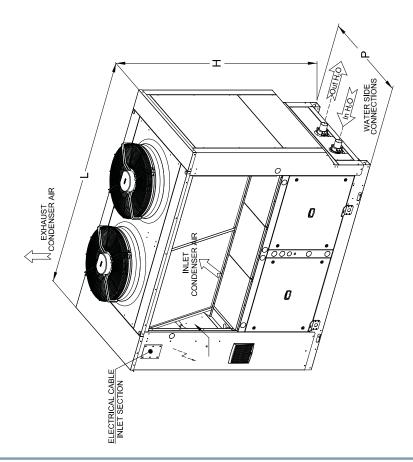

RAS 3402-3702 MC VB Kp



	RAS 3402 MC VB Kp RAS 3702 MC VB Kp	RAS 3702 MC VB Kp
Global weight (Kg)	3134	3152
Point W1 (Kg)	395	400
Point W2 (Kg)	412	412
Point W3 (Kg)	399	404
Point W4 (Kg)	420	420
Point W5 (Kg)	381	384
Point W6 (Kg)	403	403
Point W7 (Kg)	345	350
Point W8 (Kg)	379	379

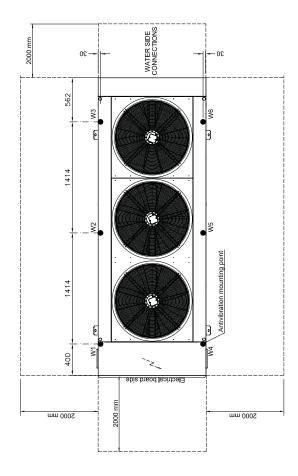
RAS 521-721 F Kp

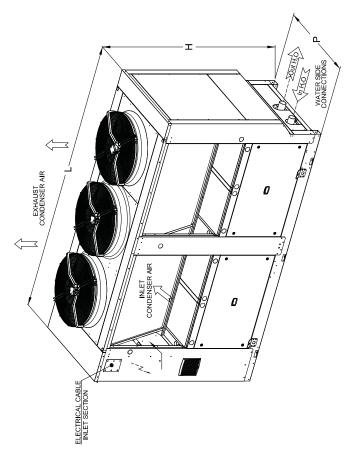



	RAS 521 F Kp	RAS 591 F Kp	RAS 721 F Kp
Global weight (Kg)	1088	1124	1150
Point W1 (Kg)	303	311	317
Point W2 (Kg)	241	251	258
Point W3 (Kg)	303	311	317
Point W4 (Kg)	241	251	258
*	Ø 1/2" Gas	Ø 3/4" Gas	Ø 3/4" Gas
. !!			

* Discharge pipe for HP safety valve

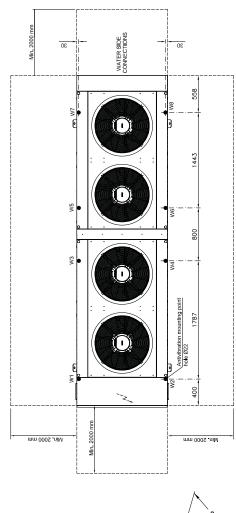
RAS 871-1402 F Kp




	RAS 871 F Kp	RAS 1001 F Kp	RAS 1402 F Kp
Global weight (Kg)	1492	1558	1776
Point W1 (Kg)	379	391	459
Point W2 (Kg)	365	388	429
Point W3 (Kg)	379	391	459
Point W4 (Kg)	365	388	429
*	Ø 3/4" Gas	Ø 1" 1/4 Gas	2x Ø 3/4" Gas

* Discharge pipe for HP safety valve

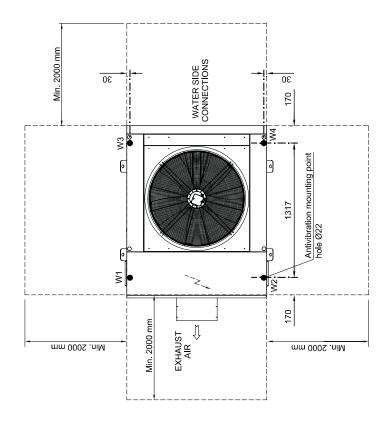
RAS 1702-2102 F Kp

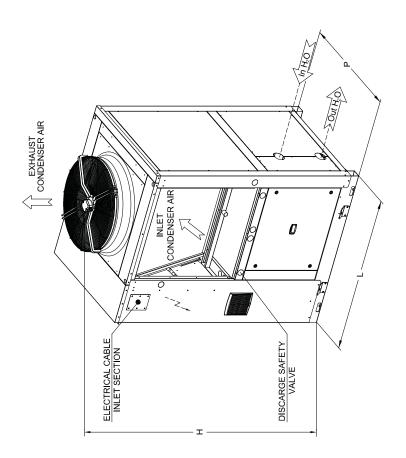



	RAS 1702 F Kp	RAS 2102 F Kp
Global weight (Kg)	2246	2280
Point W1 (Kg)	398	421
Point W2 (Kg)	377	37.7
Point W3 (Kg)	348	342
Point W4 (Kg)	398	421
Point W5 (Kg)	377	37.7
Point W6 (Kg)	348	342
*	2x Ø 3/4" Gas	2x Ø 3/4" Gas

* Discharge pipe for HP safety valve

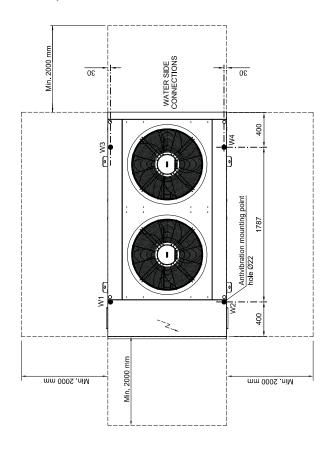
RAS 2402-3402 F Kp

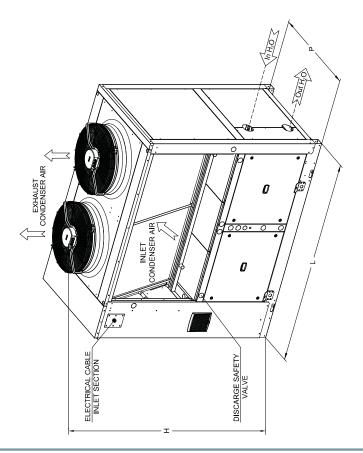




	RAS 2402 F Kp	RAS 2902 F Kp	RAS 3402 F Kp
Global weight (Kg)	2794	2974	3178
Point W1 (Kg)	385	417	445
Point W2 (Kg)	363	385	401
Point W3 (Kg)	334	346	370
Point W4 (Kg)	315	339	373
Point W5 (Kg)	385	417	445
Point W6 (Kg)	363	385	401
Point W7 (Kg)	334	346	370
Point W8 (Kg)	315	339	373
*	Ø 3/4" Gas	Ø 1" 1/4 Gas	2x Ø 3/4" Gas
* Discharge pipe for HD safety	D cafety yalya		

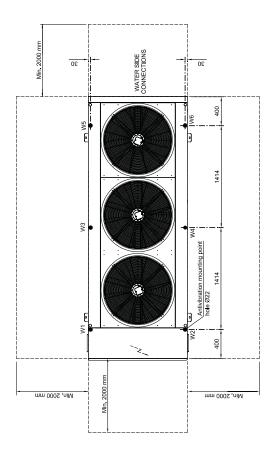
PAS 451 - 521 Kp

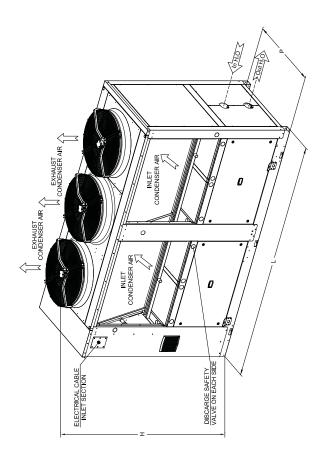




	PAS 451 Kp	PAS 521 Kp
Global weight (Kg)	884	948
Point W1 (Kg)	256	270
Point W2 (Kg)	266	270
Point W3 (Kg)	186	204
Point W4 (Kg)	186	204

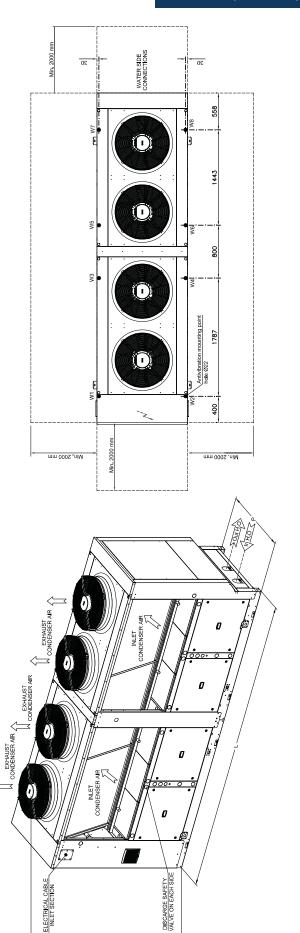
PAS 651 - 731 - 881 - 1001 - 1201 Kp



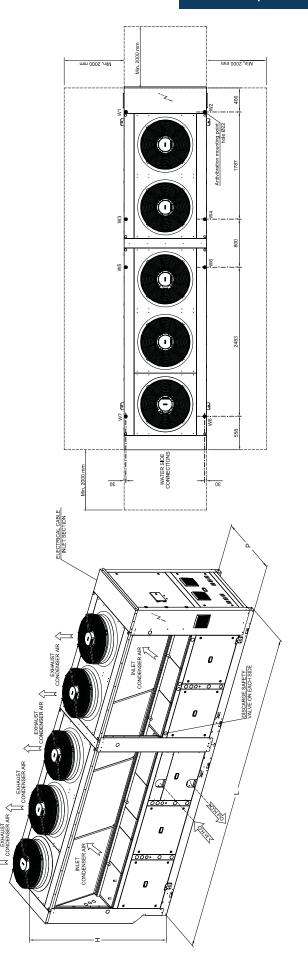


PAS 1201 Kp	1472	401	401	335	335
PAS 1001 Kp	1422	389	389	322	322
PAS 881 Kp	1356	375	375	303	303
PAS 731 Kp	1284	347	347	295	295
PAS 651 Kp	1262	341	341	290	290
	Global weight (Kg)	Point W1 (Kg)	Point W2 (Kg)	Point W3 (Kg)	Point W4 (Kg)

PAS 1502 - 1702 Kp

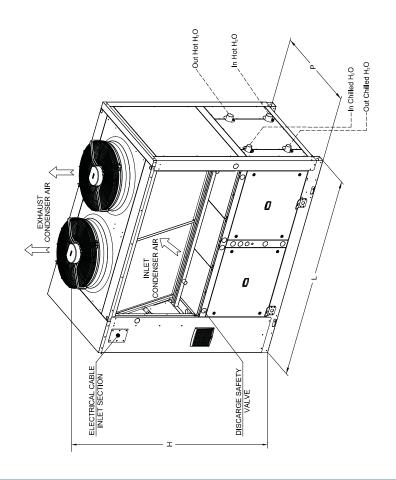


	PAS 1502 Kp	PAS 1702 Kp
Global weight (Kg)	1812	1890
Point W1 (Kg)	332	347
Point W2 (Kg)	332	347
Point W3 (Kg)	299	295
Point W4 (Kg)	299	295
Point W5 (Kg)	275	295
Point W6 (Kg)	275	295


PAS 2102 - 2502 Kp

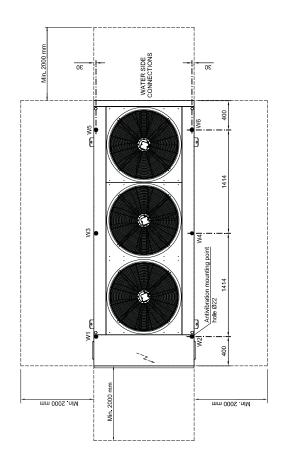
	PAS 2102 Kp	PAS 2502 Kp
Global weight (Kg)	2260	2388
Point W1 (Kg)	332	351
Point W2 (Kg)	332	351
Point W3 (Kg)	299	310
Point W4 (Kg)	299	310
Point W5 (Kg)	275	287
Point W6 (Kg)	275	287
Point W7 (Kg)	224	246
Point W8 (Kg)	224	246

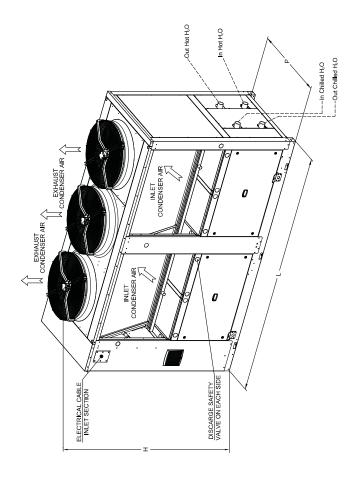

PAS 2902 - 3402 Kp



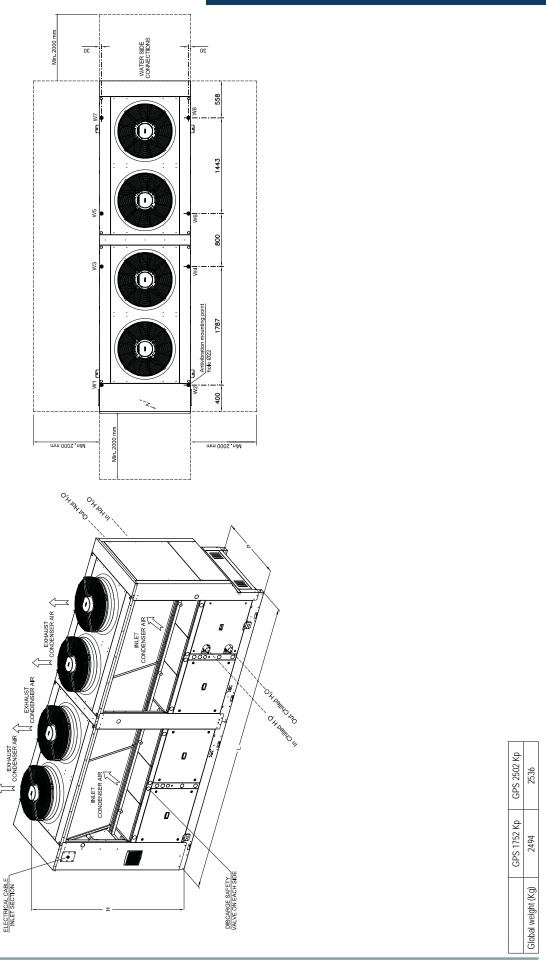
		PAS 2902 Kp	PAS 3402 Kp
	Global weight (Kg)	2940	3138
	Point W1 (Kg)	434	479
	Point W2 (Kg)	434	479
	Point W3 (Kg)	321	343
_	Point W4 (Kg)	321	343
	Point W5 (Kg)	316	332
2 0	Point W6 (Kg)	316	332
F 0/	Point W7 (Kg)	399	415
20.4	Point W8 (Kg)	399	415

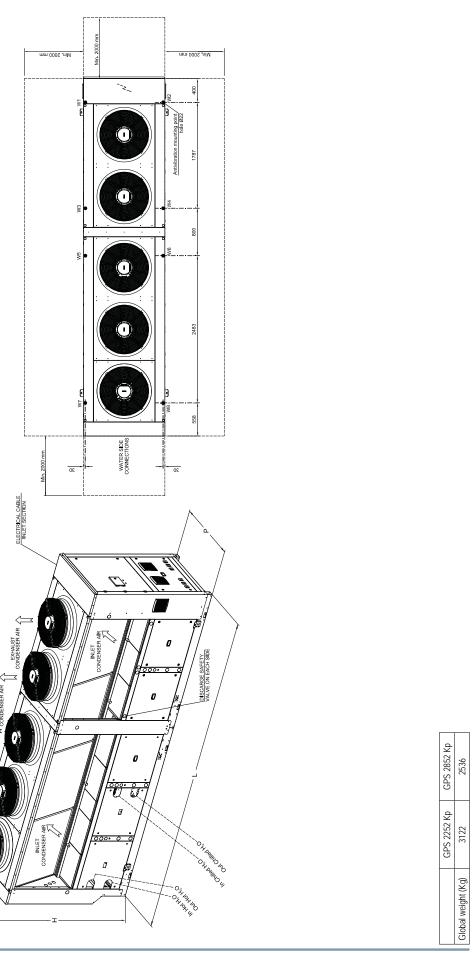
GPS 491 - 1051 Kp





	GPS 1051 Kp	1620
	GPS 891 Kp	1614
	GPS 751 Kp	1529
	GPS 581 Kp	1429
	GPS 491 Kp	1423
		Global weight (Kg)
0	5-20	024


GPS 1252 - 1452 Kp



GPS 1752 - 2052 Kp

GPS 2552 -2852 Kp

ENEX TECHNOLOGIES

VIA DELLE INDUSTRIE, 7 • CAP 31030 • VACIL DI BREDA DI PIAVE (TV) TEL. +39 0422 605 311

Info@enextechnologies.com • www.enextechnologies.com

Les données techniques contenues dans cette documentation ont valeur indicative et ne constituent en aucun cas un engagement du fabriquant. Le fabriquant se réserve le droit d'apporter toute modification nécéssaire à améliorer le produit. Les langues officielles pour tout document sont l'Italien et l'Anglais, toute autre langue doit être considérée à titre indicatif.

